

Confirmation Theory

J. Dmitri Gallow

July 7th, 2017
Pittsburgh Summer Program
University of Pittsburgh

Please interrupt

Induction \& Deduction

- In a deductive inference, the truth of the premises guarantees the truth of the conclusion.

Induction \& Deduction

- In a deductive inference, the truth of the premises guarantees the truth of the conclusion.

Pi. If H, then E

Induction \& Deduction

- In a deductive inference, the truth of the premises guarantees the truth of the conclusion.

> Pı. If H, then E
> P2. H

Induction \& Deduction

- In a deductive inference, the truth of the premises guarantees the truth of the conclusion.

Pr. If H, then E
P2. H
C. E

Induction \& Deduction

- In an inductive inference, the truth of the premises doesn't guarantee the truth of the conclusion.

Induction \& Deduction

- In an ampliative inference, the truth of the premises doesn't guarantee the truth of the conclusion.

Pr. If H, then E

Induction \& Deduction

- In an inductive inference, the truth of the premises doesn't guarantee the truth of the conclusion.

$$
\begin{aligned}
& \text { Pr. If } H \text {, then } E \\
& \text { P2. } E
\end{aligned}
$$

Induction \& Deduction

- In an inductive inference, the truth of the premises doesn't guarantee the truth of the conclusion.

Pr. If H, then E
P2. E
C. H

Deductive Logic

- Deductive Logic is the study of which deductive inferences are good qua deductive inferences (valid) and which are bad qua deductive inferences (invalid).

Deductive Logic

- Deductive Logic is the study of which deductive inferences are good qua deductive inferences (valid) and which are bad qua deductive inferences (invalid).

$$
\begin{aligned}
& H \rightarrow E \\
& H \\
& \hline E
\end{aligned}
$$

$$
H \rightarrow E
$$

$$
\frac{\neg H}{\neg E}
$$

Inductive Logic © the Theory of Confirmation

- Inductive Logic is the study of which inductive inferences are good qua inductive inferences and which are bad qua inductive inferences.

Inductive Logic © the Theory of Confirmation

- Confirmation Theory is the study of which inductive inferences are good qua inductive inferences and which are bad qua inductive inferences.

Inductive Logic © the Theory of Confirmation

- Inductive Logic is the study of which inductive inferences are good qua inductive inferences and which are bad qua inductive inferences.

Inductive Logic © the Theory of Confirmation

- Inductive Logic is the study of which inductive inferences are good qua inductive inferences and which are bad qua inductive inferences.

All observed swans are white.
All swans are white.

Inductive Logic © the Theory of Confirmation

- Inductive Logic is the study of which inductive inferences are good qua inductive inferences and which are bad qua inductive inferences.

All observed swans are white.
All swans are white.

All observed swans are white.
All but the observed swans are black.

Two Questions About Deduction

- Question I: Which deductive inferences are good, and which are bad? (What are the canons of deductive logic?)

Two Questions About Deduction

- Question I: Which deductive inferences are good, and which are bad? (What are the canons of deductive logic?)
- Question 2: Why should we think that good deductive inferences will lead us to truth?

Two Questions About Induction

- Question I: When is an inductive inference good, and when it is bad? (What are the canons of inductive logic/the theory of confirmation?)

Two Questions About Induction

- Question I: When is an inductive inference good, and when it is bad? (What are the canons of inductive logic/the theory of confirmation?)
- Question 2: Why should we think that good inductive inferences will lead us to truth?

Two Questions About Induction

- Question I: When is an inductive inference good, and when it is bad? (What are the canons of inductive logic/the theory of confirmation?)
- Question 2: Why should we think that good inductive inferences will lead us to truth?
\triangleright David Hume: there is no non-circular answer to Question 2.

Table of contents

I. Confirmation \& Disconfirmation
2. You Can't Always Get What You Want
3. Confirmation \& Probability

Probability
From Probability to Confirmation
4. Bayesian Confirmation Theory
5. Why the Bayesian Thinks You Can't Always Get What You

Want
6. The Problem of the Priors

Confirmation \& Disconfirmation

Confirmation \& Disconfirmation

- Sometimes, a piece of evidence, E, gives reason to believe a hypothesis, H.
- When this is so, say that E confirms H.
- Other times, a piece of evidence, E, gives reason to disbelieve a hypothesis, H.

Confirmation \& Disconfirmation

- Sometimes, a piece of evidence, E, gives reason to believe a hypothesis, H.
- When this is so, say that E confirms H.
- Other times, a piece of evidence, E, gives reason to disbelieve a hypothesis, H.

Confirmation \& Disconfirmation

- Sometimes, a piece of evidence, E, gives reason to believe a hypothesis, H.
- When this is so, say that E confirms H.
- Other times, a piece of evidence, E, gives reason to disbelieve a hypothesis, H.
- When this is so, say that E disconfirms H.

Confirmation \& Disconfirmation

- Sometimes, a piece of evidence, E, gives reason to believe a hypothesis, H.
- When this is so, say that E confirms H.
- Other times, a piece of evidence, E, gives reason to disbelieve a hypothesis, H.
- When this is so, say that E disconfirms H.

Confirmation vs Belief

- Just because we have some evidence, E, which confirms H, this doesn't mean that we should think H is true.

Confirmation is Degreed

\triangleright Confirmation comes in degrees.
$\triangleright E$ could give a very strong reason to believe that H, or it could give a rather weak reason to believe that H.
\triangleright If E confirms H, but only very weakly, then it could be that we shouldn't believe H.

Confirmation is Degreed

\triangleright Confirmation comes in degrees.
$\triangleright E$ could give a very strong reason to believe that H, or it could give a rather weak reason to believe that H.
\triangleright If E confirms H, but only very weakly, then it could be that we shouldn't believe H.

Confirmation is Degreed

\triangleright Confirmation comes in degrees.
$\triangleright E$ could give a very strong reason to believe that H, or it could give a rather weak reason to believe that H.
\triangleright If E confirms H, but only very weakly, then it could be that we shouldn't believe H.

Confirmation is Degreed

Confirmation vs Belief

- Just because we have some evidence, E, which confirms H, this doesn't mean that we should think H is true.

Evidential Defeat

\triangleright Let H be the hypothesis that John robbed the bank, and let E be the evidence that ioo eyewitnesses who know John personally identified John as the bank robber.
$\triangleright E$ strongly confirms H. But just because you have the evidence E, this doesn't mean that you should believe H.

- F needn't be vour total evidence.
\triangleright You could additionally have the evidence that John has an identical twin brother and that John has a rock-solid alibi.

Evidential Defeat

\triangleright Let H be the hypothesis that John robbed the bank, and let E be the evidence that ioo eyewitnesses who know John personally identified John as the bank robber.
$\triangleright E$ strongly confirms H. But just because you have the evidence E, this doesn't mean that you should believe H.
$\triangleright E$ needn't be your total evidence.
\triangleright You could additionally have the evidence that John has an identical twin brother and that John has a rock-solid alibi.

Evidential Defeat

\triangleright Let H be the hypothesis that John robbed the bank, and let E be the evidence that ioo eyewitnesses who know John personally identified John as the bank robber.
$\triangleright E$ strongly confirms H. But just because you have the evidence E, this doesn't mean that you should believe H.
$\triangleright E$ needn't be your total evidence.
\triangleright You could additionally have the evidence that John has an identical twin brother and that John has a rock-solid alibi.

Evidential Defeat

\triangleright Let H be the hypothesis that John robbed the bank, and let E be the evidence that ioo eyewitnesses who know John personally identified John as the bank robber.
$\triangleright E$ strongly confirms H. But just because you have the evidence E, this doesn't mean that you should believe H.
$\triangleright E$ needn't be your total evidence.
\triangleright You could additionally have the evidence that John has an identical twin brother and that John has a rock-solid alibi.

Evidential Defeat

- Deductive inference is monotonic (or indefeasible)
- If P deductively entails C, then $P \& Q$ deductively entails C as well.
- Inductive inference is non-monotonic (or defeasible)

Evidential Defeat

- Deductive inference is monotonic (or indefeasible)
- If P deductively entails C, then $P \& Q$ deductively entails C as well.
- Inductive inference is non-monotonic (or defeasible)

Evidential Defeat

- Deductive inference is monotonic (or indefeasible)
- If P deductively entails C, then $P \& Q$ deductively entails C as well.
- Inductive inference is non-monotonic (or defeasible)
- If E confirms H, it doesn't follow that $E \& F$ confirms H.

Evidential Defeat

- Deductive inference is monotonic (or indefeasible)
- If P deductively entails C, then $P \& Q$ deductively entails C as well.
- Inductive inference is non-monotonic (or defeasible)
- If E confirms H, it doesn't follow that $E \& F$ confirms H.

What We Want from a Theory of Confirmation

- A qualitative account of confirmation. - For any H, E : does E confirm H ? - A quantitative measure of confirmation.
- We'd like our theory of confirmation to be formal and intersubjective.

What We Want from a Theory of Confirmation

- A qualitative account of confirmation.
- For any H, E : does E confirm H ?
- A quantitative measure of confirmation.
- We'd like our theory of confirmation to be formal and intersubjective.

What We Want from a Theory of Confirmation

- A qualitative account of confirmation.
- For any H, E : does E confirm H ?
- A quantitative measure of confirmation.
- For any H, E : to what degree does E confirm H ?
- We'd like our theory of confirmation to be formal and intersubjective.

What We Want from a Theory of Confirmation

- A qualitative account of confirmation.
- For any H, E : does E confirm H ?
- A quantitative measure of confirmation.
- For any H, E : to what degree does E confirm H ?
- We'd like our theory of confirmation to be formal and intersubjective.

What We Want from a Theory of Confirmation

- A qualitative account of confirmation.
- For any H, E : does E confirm H ?
- A quantitative measure of confirmation.
- For any H, E : to what degree does E confirm H ?
- We'd like our theory of confirmation to be formal and intersubjective.
- Formal: we can say whether E confirms H by looking only at syntax, or logical form.
- Intersubjective: we can all agree about whether E confirms H

What We Want from a Theory of Confirmation

- A qualitative account of confirmation.
- For any H, E : does E confirm H ?
- A quantitative measure of confirmation.
- For any H, E : to what degree does E confirm H ?
- We'd like our theory of confirmation to be formal and intersubjective.
- Formal: we can say whether E confirms H by looking only at syntax, or logical form.
- Intersubjective: we can all agree about whether E confirms H

What We Want from a Theory of Confirmation

- A qualitative account of confirmation.
- For any H, E : does E confirm H ?
- A quantitative measure of confirmation.
- For any H, E : to what degree does E confirm H ?
- We'd like our theory of confirmation to be formal and intersubjective.
- Formal: we can say whether E confirms H by looking only at syntax, or logical form.
- Intersubjective: we can all agree about whether E confirms H

You Can't Always Get What You Want

Hempel's Impossibility Results

- A promising first thought: deductive consequences of a hypothesis confirm it.

If H entails E, then E confirms H.

Hempel's Impossibility Results

- A promising first thought: deductive consequences of a hypothesis confirm it.

Entailments Confirm

If H entails E, then E confirms H.

Hempel's Impossibility Results

- Another promising thought: confirmation transmits through deduction.

If E confirms H, then E confirms anything which H entails.

Hempel's Impossibility Results

- Another promising thought: confirmation transmits through deduction.

Consequence Condition

If E confirms H, then E confirms anything which H entails.

Hempel's Impossibility Results

Entailments Confirm

If H entails E, then E confirms H.

Consequence Condition

If E confirms H, then E confirms anything which H entails.

- If we accept both Entailments Confirm and the Consequence Condition, then we must say that every proposition confirms every other proposition.

Hempel's Impossibility Results

Hempel's Impossibility Results

Hempel's Impossibility Results

Hempel's Impossibility Results

Hempel's Impossibility Results

Entailments Confirm

If H entails E, then E confirms H.

Consequence Condition

If E confirms H, then E confirms anything which H entails.

- Perhaps we should weaken these principles.

Hempel's Impossibility Results

Laws are Confirmed by Their Instances

A law statement of the form "All $F \mathrm{~s}$ are $G \mathrm{~s}$ " is confirmed by an F G.

Consequence Condition

If E confirms H, then E confirms anything which H entails.

- Perhaps we should weaken these principles.

Hempel's Impossibility Results

Laws are Confirmed by Their Instances

A law statement of the form "All $F \mathrm{~s}$ are $G \mathrm{~s}$ " is confirmed by an F G.

Equivalence Condition
If E confirms H, then E confirms anything equivalent to H.

- Perhaps we should weaken these principles.

Hempel's Impossibility Results

Laws are Confirmed by Their Instances

A law statement of the form "All $F s$ are $G s$ " is confirmed by an F G.

Equivalence Condition
If E confirms H, then E confirms anything equivalent to H.

- New Problem: nearly everything confirms any given law statement.

Hempel's Impossibility Results

I. "All ravens are black" is equivalent to "All non-black things are non-ravens".
2. By Laws are Confirmed by Their Instances, a green leaf (which is both a non-black thing and a non-raven) confirms the hypothesis that all non-black things are non-ravens.
3. By I, 2, and the Equivalence Condition, a green leaf confirms the hypothesis that all ravens are black.

Hempel's Impossibility Results

I. "All ravens are black" is equivalent to "All non-black things are non-ravens".
2. By Laws are Confirmed by Their Instances, a green leaf (which is both a non-black thing and a non-raven) confirms the hypothesis that all non-black things are non-ravens.
3. By I, 2, and the Equivalence Condition, a green leaf confirms
the hypothesis that all ravens are black.

Hempel's Impossibility Results

I. "All ravens are black" is equivalent to "All non-black things are non-ravens".
2. By Laws are Confirmed by Their Instances, a green leaf (which is both a non-black thing and a non-raven) confirms the hypothesis that all non-black things are non-ravens.
3. By I, 2, and the Equivalence Condition, a green leaf confirms the hypothesis that all ravens are black.

Goodman's Impossibility Result

- Goodman: there's a deeper problem here. No theory of confirmation can be purely formal.
- In order to say whether a hypothesis of the form "All Fs are $G s$ " is confirmed by an $F G$, we must know something about what ' F ' and ' G ' mean.

Goodman's Impossibility Result

- Goodman: there's a deeper problem here. No theory of confirmation can be purely formal.
- In order to say whether a hypothesis of the form "All Fs are $G s "$ is confirmed by an $F G$, we must know something about what ' F and ' G ' mean.

Goodman's Impossibility Result

The first observed emerald is green The second observed emerald is green !
The nth observed emerald is green
All unobserved emeralds are green

Goodman's Impossibility Result

- Say that a thing is grue iff it has been observed before 2018 and is green or has not been observed before 2018 and is blue.

Goodman's Impossibility Result

$$
\infty \times \infty \times=
$$

Goodman's Impossibility Result

Goodman's Impossibility Result

The first observed emerald is green
The second observed emerald is green
:
The nth observed emerald is green
All unobserved emeralds are green

Goodman's Impossibility Result

The first observed emerald is grue The second observed emerald is grue :
The nth observed emerald is grue
All unobserved emeralds are green

Goodman's Impossibility Result

The first observed emerald is grue The second observed emerald is grue :
The nth observed emerald is grue
All unobserved emeralds are grue

Goodman's Impossibility Result

The first observed emerald is grue The second observed emerald is grue :

The nth observed emerald is grue
All unobserved emeralds are blue

Goodman's Impossibility Result

- If "All unobserved emeralds are green" is confirmed by the observation of n green emeralds, then so too is the hypothesis that "All unobserved emeralds are blue".
- A purely formal theory of confirmation cannot distinguish induction from counter-induction.
- So a theory of induction must go beyo nd logical form.

Goodman's Impossibility Result

- If "All unobserved emeralds are green" is confirmed by the observation of n green emeralds, then so too is the hypothesis that "All unobserved emeralds are blue".
- A purely formal theory of confirmation cannot distinguish induction from counter-induction.
- So a theory of induction must go beyond logical form.

Goodman's Impossibility Result

- If "All unobserved emeralds are green" is confirmed by the observation of n green emeralds, then so too is the hypothesis that "All unobserved emeralds are blue".
- A purely formal theory of confirmation cannot distinguish induction from counter-induction.
- So a theory of induction must go beyond logical form.

What We Want from a Theory of Confirmation

- A qualitative account of confirmation.
- For any H, E : does E confirm H ?
- A quantitative measure of confirmation.
- For any H, E : to what degree does E confirm H ?
- We'd like our theory of confirmation to be and intersubjective.
- Forne we an whether Econfirms H by looking only at syntax, or logieal form.
- Intersubjective: we can all agree about whether E confirms H

Confirmation \& Probability

Confirmation \& Probability

Probability

Probability

- A probability function, Pr , is any function from a set of propositions, \mathscr{P}, to the unit interval, $[\mathrm{O}, \mathrm{I}]$

$$
\operatorname{Pr}: \mathscr{P} \rightarrow[\mathrm{O}, \mathrm{I}]
$$

which also has the following properties:
If the proposition T is necessarily true, then $\operatorname{Pr}(T)=\mathrm{I}$.
If the propositions A and B are inconsistent, then
$\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$.

Probability

- A probability function, Pr , is any function from a set of propositions, \mathscr{P}, to the unit interval, $[\mathrm{O}, \mathrm{I}]$

$$
\operatorname{Pr}: \mathscr{P} \rightarrow[\mathrm{O}, \mathrm{I}]
$$

which also has the following properties:
Axi. If the proposition T is necessarily true, then $\operatorname{Pr}(T)=\mathrm{r}$.
If the propositions A and B are inconsistent, then
$\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$.

Probability

- A probability function, Pr , is any function from a set of propositions, \mathscr{P}, to the unit interval, $[\mathrm{O}, \mathrm{I}]$

$$
\operatorname{Pr}: \mathscr{P} \rightarrow[\mathrm{O}, \mathrm{I}]
$$

which also has the following properties:
Axi. If the proposition T is necessarily true, then $\operatorname{Pr}(T)=\mathrm{I}$.
Ax2. If the propositions A and B are inconsistent, then

$$
\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)
$$

Probability

- If Pr is a probability function, then we may represent it with a muddy Venn diagram.

Probability

Probability

Probability

Probability

Probability

A	B	C	Pr
T	T	T	$6 / \mathrm{I} 6$
T	T	F	$2 / \mathrm{I} 6$
T	F	T	$2 / 16$
T	F	F	$1 / 16$
F	T	T	$2 / 16$
F	T	F	$1 / 16$
F	F	T	$1 / 16$
F	F	F	$1 / 16$

Conditional Probability

- We introduce the following definition:

$$
\operatorname{Pr}(A \mid B) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}(A \& B)}{\operatorname{Pr}(B)}, \text { if defined }
$$

Conditional Probability

Conditional Probability

Conditional Probability

Probabilistic Independence

- We may say that the propositions A and B are independent (according to Pr) if and only if

$$
\operatorname{Pr}(A \& B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

Probabilistic Independence

- We may say that the propositions A and B are independent (according to Pr) if and only if

$$
\frac{\operatorname{Pr}(A \& B)}{\operatorname{Pr}(B)}=\operatorname{Pr}(A)
$$

Probabilistic Independence

- We may say that the propositions A and B are independent (according to Pr) if and only if

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)
$$

Confirmation \& Probability

From Probability to Confirmation

Confirmation Measures

- Given a probability function Pr, we may construct a confirmation measure \mathfrak{C},
- $\mathfrak{C}(H, E)$ gives the degree to which the evidence E confirms the hypothesis H.
- ne popular confirmation measure:

$$
\mathfrak{D}(H, E)=\operatorname{Pr}(H \mid E)-\operatorname{Pr}(H)
$$

Confirmation Measures

- Given a probability function Pr, we may construct a confirmation measure \mathfrak{C},
- $\mathfrak{C}(H, E)$ gives the degree to which the evidence E confirms the hypothesis H.
- One popular confirmation measure:

$$
\mathfrak{D}(H, E)=\operatorname{Pr}(H \mid E)-\operatorname{Pr}(H)
$$

Confirmation Measures

- Given a probability function Pr, we may construct a confirmation measure \mathfrak{C},
- $\mathfrak{C}(H, E)$ gives the degree to which the evidence E confirms the hypothesis H.
- One popular confirmation measure:

$$
\mathfrak{D}(H, E)=\operatorname{Pr}(H \mid E)-\operatorname{Pr}(H)
$$

- There are other possibilities-e.g.,

Confirmation Measures

- Given a probability function Pr, we may construct a confirmation measure \mathfrak{C},
- $\mathfrak{C}(H, E)$ gives the degree to which the evidence E confirms the hypothesis H.
- One popular confirmation measure:

$$
\mathfrak{D}(H, E)=\operatorname{Pr}(H \mid E)-\operatorname{Pr}(H)
$$

- There are other possibilities-e.g.,

$$
\begin{aligned}
& \mathfrak{R}(H, E)=\log \left(\frac{\operatorname{Pr}(H \mid E)}{\operatorname{Pr}(H)}\right) \\
& \mathfrak{L}(H, E)=\log \left(\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E \mid \neg H)}\right)
\end{aligned}
$$

Confirmation Measures

- All of these measures will agree about the following:
- If $\operatorname{Pr}(H \mid E)>\operatorname{Pr}(H)$, then E confirms H
- If $\operatorname{Pr}(H \mid E)<\operatorname{Pr}(H)$, then E disconfirms H
- If $\operatorname{Pr}(H \mid E)=\operatorname{Pr}(H)$, then E neither confirms ror disconfirms H

Confirmation Measures

- All of these measures will agree about the following:
- If $\operatorname{Pr}(H \mid E)>\operatorname{Pr}(H)$, then E confirms H
- If $\operatorname{Pr}(H \mid E)<\operatorname{Pr}(H)$, then E disconfirms H
- If $\operatorname{Pr}(H \mid E)=\operatorname{Pr}(H)$, then E neither confirms nor
disconfirms H

Confirmation Measures

- All of these measures will agree about the following:
- If $\operatorname{Pr}(H \mid E)>\operatorname{Pr}(H)$, then E confirms H
- If $\operatorname{Pr}(H \mid E)<\operatorname{Pr}(H)$, then E disconfirms H
- If $\operatorname{Pr}(H \mid E)=\operatorname{Pr}(H)$, then E neither confirms nor disconfirms H

Confirmation Measures

- All of these measures will agree about the following:
- If $\operatorname{Pr}(H \mid E)>\operatorname{Pr}(H)$, then E confirms H
- If $\operatorname{Pr}(H \mid E)<\operatorname{Pr}(H)$, then E disconfirms H
- If $\operatorname{Pr}(H \mid E)=\operatorname{Pr}(H)$, then E neither confirms nor disconfirms H

Probability \& Confirmation

- It is a consequence of the definition of conditional probability that:

$$
\operatorname{Pr}(H \mid E)=\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(H)
$$

- So, we may say: E confirms H if and only if

$$
\operatorname{Pr}(H \mid E)>\operatorname{Pr}(H)
$$

- That is: E confirms H if and only if H did a good job predicting E.

Probability \& Confirmation

- It is a consequence of the definition of conditional probability that:

$$
\operatorname{Pr}(H \mid E)=\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(H)
$$

- So, we may say: E confirms H if and only if

$$
\operatorname{Pr}(H \mid E)>\operatorname{Pr}(H)
$$

- That is: E confirms H if and only if H did a good job predicting E.

Probability \& Confirmation

- It is a consequence of the definition of conditional probability that:

$$
\operatorname{Pr}(H \mid E)=\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(H)
$$

- So, we may say: E confirms H if and only if

$$
\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(H)>\operatorname{Pr}(H)
$$

- That is: E confirms H if and only if H did a good job predicting E.

Probability \& Confirmation

- It is a consequence of the definition of conditional probability that:

$$
\operatorname{Pr}(H \mid E)=\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(H)
$$

- So, we may say: E confirms H if and only if

$$
\operatorname{Pr}(E \mid H)>\operatorname{Pr}(E)
$$

- That is: E confirms H if and only if H did a good job predicting E.

Probability \& Confirmation

- It is a consequence of the definition of conditional probability that:

$$
\operatorname{Pr}(H \mid E)=\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(H)
$$

- So, we may say: E confirms H if and only if

$$
\operatorname{Pr}(E \mid H)>\operatorname{Pr}(E)
$$

- That is: E confirms H if and only if H did a good job predicting E.

Probability \& Confirmation

- E confirms H if and only if H did a good job predicting E.
- What do we mean by 'good job’?

Probability \& Confirmation

- E confirms H if and only if H did a good job predicting E.
- What do we mean by 'good job’?
- In order to do a good job predicting E, H doesn't have to
make E likely.
- Also, in order to do a good job predicting E, it is not enough
for H to make E likely.
- To do a good job predicting E, H must make E more likely
than its negation, $\neg H$.

Probability \& Confirmation

- E confirms H if and only if H did a good job predicting E.
- What do we mean by 'good job’?
- In order to do a good job predicting E, H doesn't have to make E likely.
- Also, in order to do a good job predicting E, it is not enough for H to make E likely.
- To do a good job predictir E, H must make E more likely than its negation, $\neg H$.

Probability \& Confirmation

- E confirms H if and only if H did a good job predicting E.
- What do we mean by ‘good job’?
- In order to do a good job predicting E, H doesn't have to make E likely.
- Also, in order to do a good job predicting E, it is not enough for H to make E likely.
- To do a good job predicting E, H must make E more likely than its negation, $\neg H$.

Probability \& Confirmation

- E confirms H if and only if H did a good job predicting E.
- What do we mean by 'good job’?
- In order to do a good job predicting E, H doesn't have to make E likely.
- Also, in order to do a good job predicting E, it is not enough for H to make E likely.
- To do a good job predicting E, H must make E more likely than its negation, $\neg H$.

Probability \& Confirmation

- The suspect confesses.
- This is very unlikely, given that the suspect is guilty. Guilty suspects almost never confess.
- However, it is even less likely that the suspect confesses, given that the suspect is innocent.
- So, a confession confirms the hypothesis that the suspect was guilty, even though a confession was very unlikely given that the suspect was guilty.

Probability \& Confirmation

- The suspect confesses.
- This is very unlikely, given that the suspect is guilty. Guilty suspects almost never confess.
- However, it is even less likely that the suspect confesses, given that the suspect is innocent.
- So, a confession confirms the hy pothesis that the suspect was guilty, even though a confession was very unlikely given that the suspect was guilty.

Probability \& Confirmation

- The suspect confesses.
- This is very unlikely, given that the suspect is guilty. Guilty suspects almost never confess.
- However, it is even less likely that the suspect confesses, given that the suspect is innocent.
- So, a confession confirms the hypothesis that the suspect was guilty, even though a confession was very unlikely given that the suspect was guilty.

Probability \& Confirmation

- The suspect confesses.
- This is very unlikely, given that the suspect is guilty. Guilty suspects almost never confess.
- However, it is even less likely that the suspect confesses, given that the suspect is innocent.
- So, a confession confirms the hypothesis that the suspect was guilty, even though a confession was very unlikely given that the suspect was guilty.

Probability \& Confirmation

Probability \& Confirmation

Probability \& Confirmation

Probability \& Confirmation

- Hypothesis, H : Bob wears a helmet on his bike ride into work.
- Evidence, $E:$ Bob makes it into work without getting into an accident.
- Given H, E is very likely.
- However, E is even more likely given $\neg H$.
- So E doesn't confirm H, even though H made E very likely.

Probability \& Confirmation

- Hypothesis, H : Bob wears a helmet on his bike ride into work.
- Evidence, $E:$ Bob makes it into work without getting into an accident.
- Given H, E is very likely.
- However, E is even more likely given $\neg H$.
- So E doesn't confirm H, even though H made E very likely.

Probability \& Confirmation

- Hypothesis, H : Bob wears a helmet on his bike ride into work.
- Evidence, $E:$ Bob makes it into work without getting into an accident.
- Given H, E is very likely.
- However, E is even more likely given $\neg H$.
- So E doesn't confirm H, even though H made E very likely.

Probability \& Confirmation

- Hypothesis, H : Bob wears a helmet on his bike ride into work.
- Evidence, $E:$ Bob makes it into work without getting into an accident.
- Given H, E is very likely.
- However, E is even more likely given $\neg H$.
- So E doesn't confirm H, even though H made E very likely.

Probability \& Confirmation

- Hypothesis, H : Bob wears a helmet on his bike ride into work.
- Evidence, E : Bob makes it into work without getting into an accident.
- Given H, E is very likely.
- However, E is even more likely given $\neg H$.
- So E doesn't confirm H, even though H made E very likely.

Probability \& Confirmation

Probability \& Confirmation

Probability \& Confirmation

Break

Bayesian Confirmation Theory

Credences

- Our theory of confirmation says nothing until we say more about the probability function Pr. - The Bayesian thinks that Pr represents some hypothetical rational agent's degrees of belief, or credences.

Credences

- Our theory of confirmation says nothing until we say more about the probability function Pr.
- The Bayesian thinks that Pr represents some hypothetical rational agent's degrees of belief, or credences.
- If $\operatorname{Pr}(A)=\mathrm{I}$, then the agent thinks that A is certainly true.
- If $\operatorname{Pr}(A)=0$, then the agent thinks that A is certainly false.
- If $\operatorname{Pr}(A)=\mathrm{I} / 2$, then the agent is as confident that A is true as they are that A is false.

Credences

- Our theory of confirmation says nothing until we say more about the probability function Pr.
- The Bayesian thinks that Pr represents some hypothetical rational agent's degrees of belief, or credences.
- If $\operatorname{Pr}(A)=\mathrm{r}$, then the agent thinks that A is certainly true.
- If $\operatorname{Pr}(A)=0$, then the agent thinks that A is certainly false
- If $\operatorname{Pr}(A)=\mathrm{r} / 2$, then the agent is as confident that A is true as they are that A is false.

Credences

- Our theory of confirmation says nothing until we say more about the probability function Pr.
- The Bayesian thinks that Pr represents some hypothetical rational agent's degrees of belief, or credences.
- If $\operatorname{Pr}(A)=\mathrm{I}$, then the agent thinks that A is certainly true.
- If $\operatorname{Pr}(A)=0$, then the agent thinks that A is certainly false.
- If $\operatorname{Pr}(A)=1 / 2$, then the agent is as confident that A is true as they are that A is false.

Credences

- Our theory of confirmation says nothing until we say more about the probability function Pr.
- The Bayesian thinks that Pr represents some hypothetical rational agent's degrees of belief, or credences.
- If $\operatorname{Pr}(A)=\mathrm{r}$, then the agent thinks that A is certainly true.
- If $\operatorname{Pr}(A)=0$, then the agent thinks that A is certainly false.
- If $\operatorname{Pr}(A)=\mathrm{I} / 2$, then the agent is as confident that A is true as they are that A is false.

Probabilism

- The first claim of Bayesianism:

It is a requirement of rationality that your degrees of belief Pr satisfy the axioms of probability.

Probabilism

- The first claim of Bayesianism:

Probabilism

It is a requirement of rationality that your degrees of belief Pr satisfy the axioms of probability.

Conditionalization

- Suppose that, upon acquiring the total evidence E, you are disposed to adopt some new degrees of belief, Pr_{E}.
- The second claim of Bayesianism:

Conditionalization

- Suppose that, upon acquiring the total evidence E, you are disposed to adopt some new degrees of belief, Pr_{E}.
- The second claim of Bayesianism:

It is a requirement of rationality that, upon acquiring the total evidence E, you are disposed to adopt a new credence function Pr_{E} which is your old credence function conditionalized on E. That is, for all H,

$$
\operatorname{Pr}_{E}(H)=\operatorname{Pr}(H \mid E)=\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(H)
$$

Conditionalization

- Suppose that, upon acquiring the total evidence E, you are disposed to adopt some new degrees of belief, Pr_{E}.
- The second claim of Bayesianism:

Conditionalization

It is a requirement of rationality that, upon acquiring the total evidence E, you are disposed to adopt a new credence function Pr_{E} which is your old credence function conditionalized on E. That is, for all H,

$$
\operatorname{Pr}_{E}(H)=\operatorname{Pr}(H \mid E)=\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(H)
$$

Priors and Posteriors

- Pr is the prior credence function. - Pr_{E} is the posterior credence function.

Priors and Posteriors

- Pr is the prior credence function.
- Pr_{E} is the posterior credence function.

Bayesian Theory of Confirmation

- The Bayesian theory of confirmation says that E confirms H iff

$$
\operatorname{Pr}_{E}(H)>\operatorname{Pr}(H)
$$

- And E disconfirms H iff
$\operatorname{Pr}_{E}(H)<\operatorname{Pr}(H)$

Bayesian Theory of Confirmation

- The Bayesian theory of confirmation says that E confirms H iff

$$
\operatorname{Pr}_{E}(H)>\operatorname{Pr}(H)
$$

- And E disconfirms H iff

$$
\operatorname{Pr}_{E}(H)<\operatorname{Pr}(H)
$$

Justifying Bayesianism Pragmatically

- A pragmatic justification of probabilism: If your degrees of belief don't satisfy the axioms of probability, then you could be sold a combination of bets which is guaranteed to lose you money come what may.
- A pragmatic justification of conditionalization: If you stand to learn whether E, and you are disposed to revise your beliefs in any way other than conditionalization, then you could be reliably sold a series of bets which are guaranteed to lose you money no matter what.

Justifying Bayesianism Pragmatically

- A pragmatic justification of probabilism: If your degrees of belief don't satisfy the axioms of probability, then you could be sold a combination of bets which is guaranteed to lose you money come what may.
- A pragmatic justification of conditionalization: If you stand to learn whether E, and you are disposed to revise your beliefs in any way other than conditionalization, then you could be reliably sold a series of bets which are guaranteed to lose you money no matter what.

Two Questions About Induction

- Question I: What are the canons of inductive logic?
- Question 2: Why should we think that good inductive inferences will lead us to truth?

Two Questions About Induction

- Question I: What are the canons of inductive logic?
- Question 2: Why should we think that good inductive inferences will lead us to truth?

Justifying Bayesianism Alethically

- An alethic justification of probabilism: If your degrees of belief don't satisfy the axioms of probability, then there is some other degrees of belief you could adopt which is guaranteed to be more accurate than yours, no matter what.
- An alethic justification of conditionalization: If you stand to learn whether E, then the strategy of conditionalization has higher expected accuracy than any other strategy of belief-revision.

Justifying Bayesianism Alethically

- An alethic justification of probabilism: If your degrees of belief don't satisfy the axioms of probability, then there is some other degrees of belief you could adopt which is guaranteed to be more accurate than yours, no matter what.
- An alethic justification of conditionalization: If you stand to learn whether E, then the strategy of conditionalization has higher expected accuracy than any other strategy of belief-revision.

Why the Bayesian Thinks You Can't Always Get What You Want

Hempel's Impossibility Results, Again

Entailments Confirm

If H entails E, then E confirms H

Consequence Condition

If E confirms H, then E confirms anything which H entails.

- If we accept both Entailments Confirm and Consequence Condition, then every proposition confirms every other proposition.

Hempel's Impossibility Results, Again

Entailments Confirm

If H entails E, then E confirms H

Hempel's Impossibility Results, Again

Entailments Confirm

If H entails E, then E confirms H

Hempel's Impossibility Results, Again

Entailments Confirm

If H entails E, then E confirms H

Hempel's Impossibility Results, Again

Consequence Condition

If E confirms H, then E confirms anything which H entails.

- We are playing poker, and I catch a glimpse of your cards. I see that you have a spade.
- That you have a spade confirms that you have the ace of spades.
- That you have the ace of spades entails that you have an ace.
- But that you have a spade does not confirm that you have an ace.

Hempel's Impossibility Results, Again

Consequence Condition

If E confirms H, then E confirms anything which H entails.

- We are playing poker, and I catch a glimpse of your cards. I see that you have a spade.
- That you have a spade confirms that you have the ace of spades.
- That you have the ace of spades entails that you have an ace.
- But that you have a spade does not confirm that you have an ace.

Hempel's Impossibility Results, Again

Consequence Condition

If E confirms H, then E confirms anything which H entails.

- We are playing poker, and I catch a glimpse of your cards. I see that you have a spade.
- That you have a spade confirms that you have the ace of spades.
- That you have the ace of spades entails that you have an ace.
- But that you have a spade does not confirm that you have an ace.

Hempel's Impossibility Results, Again

Consequence Condition
If E confirms H, then E confirms anything which H entails.

- We are playing poker, and I catch a glimpse of your cards. I see that you have a spade.
- That you have a spade confirms that you have the ace of spades.
- That you have the ace of spades entails that you have an ace.
- But that you have a spade does not confirm that you have an ace.

Hempel's Impossibility Results, Again

Consequence Condition

If E confirms H, then E confirms anything which H entails.

Hempel's Impossibility Results, Again

Consequence Condition

If E confirms H, then E confirms anything which H entails.

Hempel's Impossibility Results, Again

Consequence Condition

If E confirms H, then E confirms anything which H entails.

Hempel's Impossibility Results, Again

Laws are Confirmed by Their Instances

A law statement of the form "All $F s$ are $G s$ " is confirmed by an F G

Equivalence Condition

If E confirms H, then E confirms anything equivalent to H

- If we accept both of these principles, then we must say that a green leaf confirms the hypothesis that "All ravens are black".

Hempel's Impossibility Results, Again

Equivalence Condition

If E confirms H, then E confirms anything equivalent to H

Hempel's Impossibility Results, Again

Equivalence Condition

If E confirms H, then E confirms anything equivalent to H

- If H is equivalent to H^{*}, then $\operatorname{Pr}(H)=\operatorname{Pr}\left(H^{*}\right)$ and $\operatorname{Pr}(H \& E)=\operatorname{Pr}\left(H^{*} \& E\right)$. So

$$
\operatorname{Pr}\left(H^{*} \mid E\right)=\frac{\operatorname{Pr}\left(H^{*} \& E\right)}{\operatorname{Pr}(E)}=\frac{\operatorname{Pr}(H \& E)}{\operatorname{Pr}(E)}=\operatorname{Pr}(H \mid E)
$$

Hempel's Impossibility Results, Again

Laws are Confirmed by Their Instances

A law of the form "All $F s$ are $G s$ " is confirmed by an $F G$

Hempel's Impossibility Results, Again

- $E=$ a randomly selected thing is a non-black non-raven.
- As we saw, E will confirm $A l l$ iff $A l l$ makes E more likely than Some. But

- So the Universal hypothesis $A l l$ is not confirmed by a non-black non-raven.

Hempel's Impossibility Results, Again

- $E=$ a randomly selected thing is a non-black non-raven.
- As we saw, E will confirm $A l l$ iff $A l l$ makes E more likely than Some. But

$$
\operatorname{Pr}(E \mid A l l)=\mathrm{I} / 4 \quad \text { and } \quad \operatorname{Pr}(E \mid \text { Some })=\mathrm{I} / 4
$$

- So the Universal hypothesis $A l l$ is not confirmed by a non-black non-raven.

Hempel's Impossibility Results, Again

- $E=$ a randomly selected thing is a non-black non-raven.
- As we saw, E will confirm $A l l$ iff $A l l$ makes E more likely than Some. But

$$
\operatorname{Pr}(E \mid A l l)=\mathrm{I} / 4 \quad \text { and } \quad \operatorname{Pr}(E \mid \text { Some })=\mathrm{I} / 4
$$

- So the Universal hypothesis All is not confirmed by a non-black non-raven.

Hempel's Impossibility Results, Again

- $E=$ a randomly selected thing is a non-black non-raven.
- As we saw, E will confirm $A l l$ iff $A l l$ makes E more likely than Some. But

$$
\operatorname{Pr}(E \mid A l l)=\mathrm{I} / 4 \quad \text { and } \quad \operatorname{Pr}(E \mid \text { Some })=\mathrm{I} / 4
$$

- So the Universal hypothesis All is not confirmed by a non-black non-raven.
- So Laws are Confirmed by Their Instances is false.

Hempel's Impossibility Results, Again

- $E^{*}=$ A randomly selected thing is a black raven.
- As we saw, E^{*} will confirm All iff $A l l$ makes E^{*} more likely than Some does. And

$$
\operatorname{Pr}\left(E^{*} \mid A I A\right)=1 / 2 \quad \text { and } \quad \operatorname{Pr}\left(E^{*} \mid \text { Some }\right)=I / 4
$$

- So a black raven confirms All, even though a non-black non-raven does not.

Hempel's Impossibility Results, Again

$$
\begin{gathered}
\begin{array}{c}
\text { All } \\
\text { Black }
\end{array} \\
\text { Non-Black }
\end{gathered} \begin{gathered}
\underline{\text { Some }} \\
\text { Raven } \\
\text { Non-Raven }
\end{gathered} \begin{gathered}
\text { Black }
\end{gathered} \text { Non-Black }
$$

- $E^{*}=$ A randomly selected thing is a black raven.
- As we saw, E^{*} will confirm $A l l$ iff $A l l$ makes E^{*} more likely than Some does. And

$$
\operatorname{Pr}\left(E^{*} \mid A l l\right)=\mathrm{I} / 2 \quad \text { and } \quad \operatorname{Pr}\left(E^{*} \mid \text { Some }\right)=\mathrm{I} / 4
$$

- So a black raven confirms $A l l$, even though a non-black non-raven does not.

Hempel's Impossibility Results, Again

- $E^{*}=$ A randomly selected thing is a black raven.
- As we saw, E^{*} will confirm All iff All makes E^{*} more likely than Some does. And

$$
\operatorname{Pr}\left(E^{*} \mid A l l\right)=\mathrm{I} / 2 \quad \text { and } \quad \operatorname{Pr}\left(E^{*} \mid \text { Some }\right)=\mathrm{I} / 4
$$

- So a black raven confirms All, even though a non-black non-raven does not.

Goodman's Impossibility Result

- Green $=$ All emeralds are green
- Grue $=$ All emeralds are grue
- $E=$ All observed emeralds are green/grue

Goodman's Impossibility Result

- Green $=$ All emeralds are green
- Grue $=$ All emeralds are grue
- $E=$ All observed emeralds are green/grue

Goodman's Impossibility Result

- Green $=$ All emeralds are green
- Grue $=$ All emeralds are grue
- $E=$ All observed emeralds are green/grue

Goodman's Impossibility Result

$$
\begin{aligned}
\frac{\operatorname{Pr}(\text { Green } \mid E)}{\operatorname{Pr}(\text { Grue } \mid E)} & =\frac{\frac{\operatorname{Pr}(E \mid \text { Green })}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(\text { Green })}{\frac{\operatorname{Pr}(\text { Grue })}{\operatorname{Pr}(E)} \cdot \operatorname{Pr}(\text { Grue })} \\
& =\frac{\operatorname{Pr}(E \mid \text { Green }) \cdot \operatorname{Pr}(\text { Green })}{\operatorname{Pr}(E \mid \text { Grue }) \cdot \operatorname{Pr}(\text { Grue })} \\
& =\frac{\operatorname{Pr}(\text { Green })}{\operatorname{Pr}(\text { Grue })}
\end{aligned}
$$

The Problem of the Priors

The Problem of the Priors

- If we want Green to have a higher posterior credence than Grue, then we must stipulate that Green has a higher prior credence than Grue.
- The "problem of the priors": which prior credences is it rational to adopt?

The Problem of the Priors

- If we want Green to have a higher posterior credence than Grue, then we must stipulate that Green has a higher prior credence than Grue.
- The "problem of the priors": which prior credences is it rational to adopt?

What We Want from a Theory of Confirmation

- A qualitative account of confirmation.
- For any H, E : does E confirm H ?
- A quantitative measure of confirmation.
- For any H, E : to what degree does E confirm H ?
- We'd like our theory of confirmation to be and intersubjective.
- For we wan whether Econfirms H by looking only at syntax, or logieal fom.
- Intersubjective: we can all agree about whether E confirms H

Subjectivism vs Objectivism

- Radical Subjectivism: All probabilistic priors are rationally permissible.
- Only slightly less radical subjectivism: Any probabilistic prior is rationally permissible so long as it satisfies a PROBABILITY COORDINATION PRINCIPLE like
if H gives E an objective chance of x, then $\operatorname{Pr}(E \mid H)=x$
- Moderate Subjectivism: There is a limited range of rationally permissible priors.
- Objectivism: There is only one rational prior.

Subjectivism vs Objectivism

- Radical Subjectivism: All probabilistic priors are rationally permissible.
- Only slightly less radical subjectivism: Any probabilistic prior is rationally permissible so long as it satisfies a probability coordination principle like
if H gives E an objective chance of x, then $\operatorname{Pr}(E \mid H)=x$
- Moderate Subjectivism: There is a limited range of rationally permissible priors.
- Objectivism. There is only one rational prior.

Subjectivism vs Objectivism

- Radical Subjectivism: All probabilistic priors are rationally permissible.
- Only slightly less radical subjectivism: Any probabilistic prior is rationally permissible so long as it satisfies a probability coordination principle like

$$
\text { if } H \text { gives } E \text { an objective chance of } x \text {, then } \operatorname{Pr}(E \mid H)=x
$$

- Moderate Subjectivism: There is a limited range of rationally permissible priors.
- Objectivism: There is only one rational prior.

Subjectivism vs Objectivism

- Radical Subjectivism: All probabilistic priors are rationally permissible.
- Only slightly less radical subjectivism: Any probabilistic prior is rationally permissible so long as it satisfies a probability coordination principle like

$$
\text { if } H \text { gives } E \text { an objective chance of } x \text {, then } \operatorname{Pr}(E \mid H)=x
$$

- Moderate Subjectivism: There is a limited range of rationally permissible priors.
- Objectivism: There is only one rational prior.

The Principle of Indifference

- The Principle of Indifference undergirds one version of Objectivism.

In the absence of evidence, assume a uniform credence distribution.

The Principle of Indifference

- The Principle of Indifference undergirds one version of Objectivism.

The Principle of Indifference

In the absence of evidence, assume a uniform credence distribution.

Bertrand's Paradox

- I drove 2100 miles from Pittsburgh to L.A. The trip took somewhere between 30 and 42 hours.
- What is the rational credence to have that it took between 30 and 35 hours?
- Drinciple of Indifference:

Bertrand's Paradox

- I drove 2IOO miles from Pittsburgh to L.A. The trip took somewhere between 30 and 42 hours.
- What is the rational credence to have that it took between 30 and 35 hours?
- Principle of Indifference:

Bertrand's Paradox

- I drove 2100 miles from Pittsburgh to L.A. The trip took somewhere between 30 and 42 hours.
- What is the rational credence to have that it took between 30 and 35 hours?
- Principle of Indifference:

$$
\operatorname{Pr}(30 \leq t \leq 35)=\frac{5}{\mathrm{I} 2}
$$

Bertrand's Paradox

- I drove 2100 miles from Pittsburgh to L.A. My average velocity was somewhere between 50 and 70 mph .
- What is the rational credence to have that the average velocity was between 60 and 70 mph ?
- ninciple ofrndifference:

Bertrand's Paradox

- I drove 2100 miles from Pittsburgh to L.A. My average velocity was somewhere between 50 and 70 mph .
- What is the rational credence to have that the average velocity was between 60 and 70 mph ?
- Principle of Indifference:

Bertrand's Paradox

- I drove 2100 miles from Pittsburgh to L.A. My average velocity was somewhere between 50 and 70 mph .
- What is the rational credence to have that the average velocity was between 60 and 70 mph ?
- Principle of Indifference:

$$
\operatorname{Pr}(60 \leq v \leq 70)=\frac{\mathrm{I}}{2}
$$

Bertrand's Paradox

- The two cases are exactly the same.
- Principle of Indifference: $\operatorname{Pr}(30 \leq t \leq 35)=\frac{5}{12}$
- Principle of Indifference: $\operatorname{Pr}(60 \leq v \leq 70)=\frac{1}{2}$
- But $30 \leq t \leq 35$ if and only if $60 \leq 1 \leq 70$. So thery must receive the same credence, assuming Probabilism.

Bertrand's Paradox

- The two cases are exactly the same.
- Principle of Indifference: $\operatorname{Pr}(30 \leq t \leq 35)=\frac{5}{12}$
- Principle of Indifference: $\operatorname{Pr}(60 \leq v \leq 70)=\frac{1}{2}$
- But $30 \leq t \leq 35$ if and only if $60 \leq v \leq 70$. So they must receive the same credence, assuming Probabilism.

Bertrand's Paradox

- The two cases are exactly the same.
- Principle of Indifference: $\operatorname{Pr}(30 \leq t \leq 35)=\frac{5}{12}$
- Principle of Indifference: $\operatorname{Pr}(60 \leq v \leq 70)=\frac{1}{2}$
- But $30 \leq t \leq 35$ if and only if $60 \leq v \leq 70$. So they must receive the same credence, assuming 1

Bertrand's Paradox

- The two cases are exactly the same.
- Principle of Indifference: $\operatorname{Pr}(30 \leq t \leq 35)=\frac{5}{12}$
- Principle of Indifference: $\operatorname{Pr}(60 \leq v \leq 70)=\frac{1}{2}$
- But $30 \leq t \leq 35$ if and only if $60 \leq v \leq 70$. So they must receive the same credence, assuming Probabilism.

What We Want from a Theory of Confirmation

- A qualitative account of confirmation.
- For any H, E : does E confirm H ?
- A quantitative measure of confirmation.
- For any H, E : to what degree does E confirm H ?
- We'd like our theory of confirmation to be form and intersubjective.
- Forn we wan whether Econflims Hby looking only at syntax, or logieal fom.
- Intec watl reabe whe E eonfirms H

Questions?

