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Causal Models

Causal Models

A causal modelM = (U, u⃗,V,E,D) is a 5-tuple of

◃ A vector, U = (U1,U2, . . . ,UM), of exogenous variables;

◃ An assignment of values, u⃗ = (u1,u2, . . . ,uM), to U;
◃ A vector V = (V1,V2, . . . ,VN), of endogenous variables; and

◃ A vector E = (ϕV1
,ϕV2

, . . . ,ϕVN
) of structural equations, one

for each endogenous variable Vi ∈V.
◃ A specification, D, of which variable values are default,

normal, or inertial, and which values are deviations therefrom.
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Causal Models

B

Figure 1: Preemptive Overdetermination
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Causal Models

The causal modelM1:

U : (A,C)

u⃗ : (1, 1)

V : (B,D,E)

E :

 E := B∨D
D := C
B := A∧¬C


D : 0 is default, 1 is deviant

B

E

A B

C D

1

1

0

1 1
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Counterfactuals in Causal Models
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Counterfactuals in Causal Models
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Counterfactuals in Causal Models

Counterfactual Models

Given a causal modelM = (U, u⃗,V,E,D), including the variables
V, and given the assignment of values v to V, the counterfactual
modelM[V→ v] = (U[V→ v], u⃗[V→ v], V[V→ v], E[V→ v],
D[V→ v]) is the model such that:

• V[V→ v] =V−V

• U[V→ v] =U∪V

• E[V→ v] = E− (ϕVi
| Vi ∈ V)

• u⃗[V→ v] = u⃗∪ v

• D[V→ v] =D
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Counterfactuals in Causal Models

Causal Counterfactuals
In a causal modelM, containing the variables in V, the causal
counterfactual V = v �→ψ is true iff ψ is true in the
counterfactual modelM[V→ v],

M |= V = v �→ψ ⇐⇒ M[V→ v] |=ψ
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Defaults in Causal Models

B

E := B∨D

D := C

B := A∧¬C
A = 1

C = 1

a

e

e := b∨ d

d := c

b := a∧¬c
a = 1

c = 1
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Model Invariance

Model Invariance
Given any two causal models,M andM∗, which both contain the
variables C and E, if bothM andM∗ are correct, then C = c
caused E = e inM iff C = c caused E = e inM∗.
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Exogenous Reduction

A
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Exogenous Reduction

The modelM:

U : (A,C)

u⃗ : (0, 1)

V : (E)

E : (E := C∧¬A)

A

A E

C

0

1

1

11



Exogenous Reduction

The modelM:

U : (A,C)

u⃗ : (0, 1)

V : (E)

E : (E := C∧¬A)

A

A E

C

0

1

1

11



Exogenous Reduction

The modelM−A:
U : (A,C)

u⃗ : (0, 1)

V : (E)
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Exogenous Reduction

• IfM = (U, u⃗,V,E,D) is a causal model with U ∈U, then let
M−U be the model that you get by:

• Removing U from U
• Removing U’s value from u⃗
• Exogenizing any variables in V whose only parent was U
• Replacing U for its value in every structural equation in E
• Removing default information about U from D.
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Exogenous Reduction

• If every equation inM−U is surjective, then say that U is an
inessential variable.

Exogenous Reduction

If a causal modelM = (U, u⃗,V,E,D) is correct, and U ∈U is
inessential, thenM−U is also correct.
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Endogenous Reduction

B E
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Model Variance

The modelM:
U : (C)

u⃗ : (1)

V : (B,D,E)

E :

 E := B∧¬D
D := C
B := C



B E

BC

D

E

01 1

1
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Model Variance

The modelM−B:
U : (C)

u⃗ : (1)
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E :
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Endogenous Reduction

• IfM = (U, u⃗,V,E,D) is a causal model with V ∈V, then let
M−V be the model that you get by:

• Leaving U alone
• Leaving u⃗ alone
• Removing V from V
• Removing ϕV from E, and replacing V with ϕV(PA(V))

wherever V appears on the right-hand-side of an equation in
E

• Removing default information about V from D
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Endogenous Reduction

B

Figure 1: Preemptive Overdetermination
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Endogenous Reduction

The modelM1:
U : (A,C)

u⃗ : (1, 1)

V : (B,D,E)
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Endogenous Reduction

The modelM−D1 :
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Endogenous Reduction

The modelM−D,−B
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Endogenous Reduction

The modelM−B5 :
U : (C)

u⃗ : (1)

V : (D,E)
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Endogenous Reduction

The modelM−B5 :
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Endogenous Reduction

• If V has a single parent, Pa, and a single child, Ch, and if Pa
is not also a parent of Ch, then say that V is an interpolated
variable.

. . .Pa→ V→ Ch . . .

• If V is interpolated, and the equations inM−V are surjective,
then say that V is inessential.

Endogenous Reduction

If a causal modelM = (U, u⃗,V,E,D) is correct, and V ∈V is an
inessential variable, thenM−V is also correct.
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Model Invariance

• The accounts of Hitchcock (2001, 2007), Halpern & Pearl
(2001, 2005), Woodward (2003), Halpern (2008), and
Weslake (forthcoming) are all inconsistent with Model
Invariance, Exogenous Reduction, and Endogenous
Reduction.

22
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A Model Invariant Theory

• I will present a theory of causation in terms of structural
equations models which is consistent with Endogenous
Reduction, Exogenous Reduction, and Model Invariance.

• I’ll build up the theory by progressing through some familiar
cases from the literature.

23



A Model Invariant Theory

• I will present a theory of causation in terms of structural
equations models which is consistent with Endogenous
Reduction, Exogenous Reduction, and Model Invariance.

• I’ll build up the theory by progressing through some familiar
cases from the literature.

23



A Model Invariant Theory

Preemptive Overdetermination



Preemptive Overdetermination

B

Figure 2: Preemptive Overdetermination
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Preemptive Overdetermination

The modelM2:

U : (A,C)
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Preemptive Overdetermination

The modelM2[C→ 0]:
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Preemptive Overdetermination
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Preemptive Overdetermination
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Local Models

Local Model

Given a causal modelM = (U, u⃗,V,E,D), with E ∈V, the local
model at E,M((E )), is the causal model in which

(a) The exogenous variables are just the parents of E, PA(E), in
the original modelM;

(b) The exogenous variables PA(E) are assigned the values they
take on inM;

(c) The sole endogenous variable is E ;

(d) The sole structural equation is E’s structural equation inM,
ϕE; and

(e) The defaults for E and PA(E) are the same as inM.
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Local Counterfactual Dependence

• E = e locally counterfactually depends upon C = c iff, in the
local model at E,M((E)), there’s some c∗ ̸= c, e∗ ̸= e such that

M((E )) |= C = c∗ �→ E = e∗

• A (preliminary) proposal: either local or global
counterfactual dependence suffices for causation.
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Local Counterfactual Dependence

B

Figure 2: Preemptive Overdetermination
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Local Counterfactual Dependence

B

Figure 1: Preemptive Overdetermination
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A Model Invariant Theory

Counterexamples to Transitivity



Transitivity

• Sometimes, we trace out a sequence of causal relations and
conclude that the first event in the chain caused the last.

• If we can do this, then let’s say that the chain of causal
relations is transitive

• When is a chain of causal relations transitive?
• Lewis said ‘Always’, but this answer comes at a cost
• The answer to give: ‘Sometimes, but not always’.
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Transitive Path

Transitive Path
In a causal modelM, a directed path P

P : V1→ V2→ V3→ ·· · → VN

is a transitive path iff:
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Counterexamples to Transitivity

A

B

Figure 3: Tampering
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Transitive Path

Transitive Path
In a causal modelM, a directed path P

P : V1→ V2→ V3→ ·· · → VN

is a transitive path iff:

(a) For each variable Vi along P, there is a pair (vi,v∗i ) of Vi’s
actual value vi inM, and a contrast value v∗i ,

(v1,v
∗
1 )→ (v2,v

∗
2)→ (v3,v

∗
3 )→ ·· · → (vN,v

∗
N)

such that: for all j between 1 and N− 1, Vj’s taking on the
value vj, rather than v∗j , caused Vj+1 to take on the value vj+1,
rather than v∗j+1; 33
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Causes and Contrasts

• Contrastivism gives us a 4-place causal relation:

Cause(C = c,C = c∗,E = e,E = e∗)

• From this, we may recover a familiar 2-place causal relation:

Cause(C = c,E = e) ⇐⇒ ∃c∗∃e∗Cause(C = c,C = c∗,E = e,E = e∗)
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Transitive Path

Transitive Path
In a causal modelM, a directed path P

P : V1→ V2→ V3→ ·· · → VN

is a transitive path iff:

(b) Both V1’s and VN’s actual values are deviant, their contrast
values default;
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Short Circuit, again
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Transitive Path
In a causal modelM, a directed path P
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Transitive Path

Transitive Path
In a causal modelM, a directed path P

P : V1→ V2→ V3→ ·· · → VN

is a transitive path iff:

(b) Both V1’s and VN’s actual values are deviant, their contrast
values default;

(c) Every departure variable along P causes each of its return
variables along P.
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A Model Invariant Theory

Preemption and Omission without
Dependence?



Default Causes and Effects

• So far, we’ve only looked at causes and effects whose values
are deviant

• Default variable values can also be causes and effects.
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E
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Omission
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Prevention without Dependence?

• When C = c and E = e are deviant, local counterfactual
dependence suffices for causation.

• Does local counterfactual dependence suffice for causation
when C = c or E = e are default, too?
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• Does local counterfactual dependence suffice for causation
when C = c or E = e are default, too?
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Prevention without Dependence?

B

E

Figure 8: Prevention without Dependence?
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C E

Figure 8: Prevention without Dependence?
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Prevention without Dependence?

The modelM7:
U : (A,C,F)

u⃗ : (1, 1, 1)

V : (B,E)

U :

�
E := F∧¬B∧¬D
B := A∧¬C

�

B

E

B

C

A

E

01

1 0

F

1
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Prevention without Dependence?

The local modelM7((E )):
U : (B,C,F)

u⃗ : (0, 1, 1)

V : (E)

U : (E := F∧¬B∧¬D) B

C E

01

0

F

1
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Prevention without Dependence?

The modelM7((E )):
U : (B,C,F)

u⃗ : (0, 1, 1)

V : (E)
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Prevention without Dependence?

The modelM7((E ))[C→ 0]:
U : (B,C,F)

u⃗ : (0,0, 1)

V : (E)

U : (E := F∧¬B∧¬D) B

C E

10

0

F

1
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Prevention without Dependence?

B

E

Figure 7: Prevention without Dependence?
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Figure 8: Prevention without Dependence?
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Prevention without Dependence?

B E

• Any model-invariant account must say that C’s firing kept E
from firing iff D’s firing kept E from firing.
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• Any model-invariant account must say that C’s firing kept E
from firing iff D’s firing kept E from firing.

50



Omission without Dependence?

C

B

Figure 9: Omission without Dependence?
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Omission without Dependence?
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Omission without Dependence?
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Figure 9: Omission without Dependence?
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Local Dependence

• If our account is to be model-invariant, and we accept
Transitive Path, then there can be no prevention or
omission without global counterfactual dependence.

• Local counterfactual dependence only suffices for causation
when

• Both c and e are deviant values (and both c∗ and e∗ default)
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A Model Invariant Theory

Causation as Production and Dependence



Causation as Production and Dependence

Causation as Production and Dependence
In a causal modelM, C’s taking on the value c, rather than c∗,
caused E to take on the value e, rather than e∗, iff either (Prod) or
(Dep).

(Prod) Both c and e are deviant variable values, the contrasts c∗ and
e∗ defaults, and either:

i. In the local model at E,M((E)), had C taken on the value c∗,
E would have taken on the value e∗,

M((E)) |= C = c∗ �→ E = e∗

or
ii. InM, there is a transitive path leading from C to E.
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Causation as Production and Dependence

Causation as Production and Dependence
In a causal modelM, C’s taking on the value c, rather than c∗,
caused E to take on the value e, rather than e∗, iff either (Prod) or
(Dep).

(Dep) InM, had C taken on the value c∗, E would have taken on
the value e∗,
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Model-Invariance

• Suppose that we have a correct modelM = (U, u⃗,V,E,D),
with U ∈U and V ∈V.

• Neither U nor V are C or E
• U and V are both inessential

• If C = c caused E = e inM, then C = c caused E = e inM−U
• If C = c caused E = e inM, then C = c caused E = e inM−V
• If C = c didn’t cause E = e inM, then C = c didn’t cause E = e

inM−U
• If C = c didn’t cause E = e inM, then C = c didn’t cause E = e
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Model Invariance

• Thus, this account is consistent with Model Invariance,
Exogenous Reduction, and Endogenous Reduction.
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Causation as Production and Dependence

• Prod does a reasonably good job at capturing a notion of
causal production.

• Production involves uninterupted, local propogation of
deviant, non-interial states of affairs (rather than default,
inertial states of affairs)
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Causation as Production and Dependence

Causation as Production and Dependence
In a causal modelM, C’s taking on the value c, rather than c∗,
caused E to take on the value e, rather than e∗, iff either (Prod) or
(Dep).

(Prod) Both c and e are deviant variable values, the contrasts c∗ and
e∗ defaults, and either:

i. In the local model at E,M((E)), had C taken on the value c∗,
E would have taken on the value e∗,

M((E)) |= C = c∗ �→ E = e∗

or
ii. InM, there is a transitive path leading from C to E.
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Causation as Production and Dependence

Causation as Production and Dependence
In a causal modelM, C’s taking on the value c, rather than c∗,
caused E to take on the value e, rather than e∗, iff either (Prod) or
(Dep).

(Dep) InM, had C taken on the value c∗, E would have taken on
the value e∗,

M |= C = c∗ �→ E = e∗
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Causation as Production and Dependence

• Hypothesis: the notion of causal production encapsulated in
Prod represents the core of our concept of causation. The
causal judgments licensed by the Prod clause alone are far
more intuitive, natural, and widespread that those which are
only licensed with the addition of the Dep clause.

• E.g., preemptive overdetermination, as opposed to
• prevention, omission, omissive prevention, and double

prevention.

• However, if you accept the Prod clause, then the full
strength of Dep is required in order for the account to be
model-invariant.
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Double Prevention without Dependence

B

D H

Figure 10: Double Prevention without Dependence
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Figure 10: Double Prevention without Dependence
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Double Prevention without Dependence

U : (A,C,F,G)

u⃗ : (1, 1, 1, 1)

V : (B,D,H,E)

E :


E := B+G >H
H := D
D := F∧¬C
B := A∧¬C
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Double Prevention without Dependence

U : (A,C)

u⃗ : (1, 1)

V : (B,E)

E :
�

E := B∨C
B := A∧¬C
�
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Double Prevention without Dependence

B

D H

• If we wish our account to be model-invariant, and we wish to
secure the intuitive verdict in Preemptive Overdetermination,
then we must say that C’s firing caused E’s firing in figure 10.
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Double Prevention without Dependence

B

D H

• So, we must have a transitive path running from C to E.
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Double Prevention without Dependence

B

D H

• So, we must make use of the full strength of the Dep clause.
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Thank you!

Questions?
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Counterexamples to Transitivity

‘Shock Edward ’ is a game for three players. Carol and David each
has a switch with two positions, Left and Right; to start, both are
in the Left position. Carol has first turn: she can either move her
switch to Right, or do nothing. David then has a turn: he can
either move his switch to Right, or do nothing. The power is then
turned on: if both switches are in the Left position, or both in the
Right position, Edward gets an electric shock.

On this occasion the play goes as follows. Carol moves her switch
to Right. David observes Carol’s move; he wants Edward to get a
shock, so he responds by moving his switch to Right also. Edward
duly gets a shock. (McDermott, 1995)



Counterexamples to Transitivity

• A natural reading of Shock Edward :
• Carol is trying to prevent Edward from getting a shock.
• She is one of the good guys
• What she did is default.
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Counterexamples to Transitivity

• If Carol’s flipping the switch is deviant, then any model
invariant theory of causation which gets the case of
preemptive overdetermination correct will say that Carol’s
flipping the switch caused Edward to get a shock.
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Counterexamples to Transitivity

• If you want
• to give a model-invariant theory of causation and
• to say that Carol’s flipping the switch didn’t cause Edward to

get a shock,

• then you’ll have to say that one of the variable values in Shock
Edward is default.
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