Causation as Production and Dependence

 or, A Model-Invariant Theory of CausationJ. Dmitri Gallow

University of North Carolina, Chapel Hill . February 9th, 2018

Please interrupt when I stop making sense.

Table of contents

I. Causal Models
2. Model Invariance
3. A Model Invariant Theory of Causation

Preemptive Overdetermination
Counterexamples to Transitivity
Preemption and Omission without Dependence?
Causation as Production and Dependence

Causal Models

Causal Models

Causal Models

A causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a s-tuple of

> A vector, $\mathbb{U}=\left(U_{1}, U_{2}, \ldots, U_{M}\right)$, of exogenous variables; An assignment of values, $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{M}\right)$, to \mathbb{T}. A vector $\mathbb{V}=\left(V_{\mathrm{I}}, V_{2}, \ldots, V_{N}\right)$, of endogenous variables; and A vector $\pi=\left(\phi_{V}, \phi_{V}, \ldots, \phi_{N}\right)$ of stmuctural equations, one for each endogenous variable $V_{i} \in \mathbb{V}$.

> A specification, \mathscr{D}, of which variable values are default, normal, or inertial and which values are deviations therefrom.

Causal Models

Causal Models

A causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a s-tuple of
\triangleright A vector, $\mathbb{U}=\left(U_{\mathrm{r}}, U_{2}, \ldots, U_{M}\right)$, of exogenous variables; An assignment of values, $\vec{u}=\left(u_{\mathrm{T}}, u_{2}, \ldots, u_{M}\right)$, to \mathbb{U}; A vector $\mathbb{V}=\left(V_{1}, V_{2}, \ldots, V_{N}\right)$, of endogenous variables; and A vector $\mathbb{E}=\left(\phi_{V}, \phi_{V}, \ldots, \phi_{V_{N}}\right)$ of structural equations, one for each endogenous variable $V_{i} \in \mathbb{V}$.
A specification, \mathscr{D}, of which variable values are default, normal, or inertial, and which values are deviations therefrom.

Causal Models

Causal Models

A causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a s-tuple of
\triangleright A vector, $\mathbb{U}=\left(U_{1}, U_{2}, \ldots, U_{M}\right)$, of exogenous variables;
\triangleright An assignment of values, $\vec{u}=\left(u_{\mathrm{T}}, u_{2}, \ldots, u_{M}\right)$, to \mathbb{U};
A vector $\mathbb{V}=\left(V_{\mathrm{t}}, V_{2}, \ldots, V_{N}\right)$, of endogenous variables; and A vector $\mathbb{E}=\left(\phi_{V_{1}}, \phi_{V_{2}}, \ldots, \phi_{V_{N}}\right)$ of structural equations, one for each endogenous variable $V_{i} \in \mathbb{V}$.
A specification, \mathscr{D}, of which variable values are default, normal, or inertial, and which values are deviations therefrom.

Causal Models

Causal Models

A causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a 5 -tuple of
\triangleright A vector, $\mathbb{U}=\left(U_{\mathrm{I}}, U_{2}, \ldots, U_{M}\right)$, of exogenous variables;
\triangleright An assignment of values, $\vec{u}=\left(u_{\mathrm{I}}, u_{2}, \ldots, u_{M}\right)$, to \mathbb{U};
\triangleright A vector $\mathbb{V}=\left(V_{1}, V_{2}, \ldots, V_{N}\right)$, of endogenous variables; and A vector $\mathbb{E}=\left(\phi_{V_{1}}, \phi_{V_{2}}, \ldots, \phi_{V_{N}}\right)$ of structural equations, one for each endogenous variable $V_{i} \in \mathbb{V}$.
A snecification of which variable values are default, normal, or inertial, and which values are deviations therefrom.

Causal Models

Causal Models

A causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a s-tuple of
\triangleright A vector, $\mathbb{U}=\left(U_{\mathrm{I}}, U_{2}, \ldots, U_{M}\right)$, of exogenous variables;
\triangleright An assignment of values, $\vec{u}=\left(u_{\mathrm{I}}, u_{2}, \ldots, u_{M}\right)$, to \mathbb{U};
\triangleright A vector $\mathbb{V}=\left(V_{\mathrm{r}}, V_{2}, \ldots, V_{N}\right)$, of endogenous variables; and
\triangleright A vector $\mathbb{E}=\left(\phi_{V_{1}}, \phi_{V_{2}}, \ldots, \phi_{V_{N}}\right)$ of structural equations, one for each endogenous variable $V_{i} \in \mathbb{V}$.
A specification, \mathscr{D}, of which variable values are default, normal, or inertial, and which values are deviations therefrom.

Causal Models

Causal Models

A causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a s-tuple of
\triangleright A vector, $\mathbb{U}=\left(U_{\mathrm{I}}, U_{2}, \ldots, U_{M}\right)$, of exogenous variables;
\triangleright An assignment of values, $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{M}\right)$, to \mathbb{U};
$\triangleright \mathrm{A}$ vector $\mathbb{V}=\left(V_{\mathrm{I}}, V_{2}, \ldots, V_{N}\right)$, of endogenous variables; and
\triangleright A vector $\mathbb{E}=\left(\phi_{V_{1}}, \phi_{V_{2}}, \ldots, \phi_{V_{N}}\right)$ of structural equations, one for each endogenous variable $V_{i} \in \mathbb{V}$.
\triangleright A specification, \mathscr{D}, of which variable values are default, normal, or inertial, and which values are deviations therefrom.

Causal Models

Figure 1: Preemptive Overdetermination

Causal Models

The causal model $\mathbb{M}_{\mathbf{I}}$:
$\mathbb{U}:(A, C)$
$\vec{u}:(\mathrm{I}, \mathrm{I})$
$\mathbb{V}:(B, D, E)$
$\mathbb{E}:\left(\begin{array}{l}E:=B \vee D \\ D \\ B:=C \\ B\end{array}=A \wedge \neg C\right)$
\mathscr{D} : O is default, I is deviant

Causal Models

The causal model $\mathbb{M}_{\mathbf{I}}$:
$\mathbb{U}:(A, C)$
$\vec{u}:(\mathrm{I}, \mathrm{I})$
$\mathbb{V}:(B, D, E)$
$\mathbb{E}:\left(\begin{array}{l}E:=B \vee D \\ D:=C \\ B:=A \wedge \neg C\end{array}\right)$
\mathscr{D} : O is default, I is deviant

Counterfactuals in Causal Models

The causal model $\mathbb{M}_{\mathbf{r}}$:

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B \vee D \\
D:=C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Counterfactuals in Causal Models

The causal model $\mathbb{M}_{\mathrm{I}}[D \rightarrow 0]$:

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B \vee D \\
D:=C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Counterfactuals in Causal Models

The causal model $\mathbb{M}_{\mathrm{I}}[D \rightarrow 0]$:

$$
\begin{aligned}
& \mathbb{U}:(A, C, D) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B \vee D \\
D:=C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Counterfactuals in Causal Models

The causal model $\mathbb{M}_{\mathrm{I}}[D \rightarrow 0]$:

$$
\begin{aligned}
& \mathbb{U}:(A, C, D) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{o}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\left(\begin{array}{c}
E:=B \vee D \\
D:=C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Counterfactuals in Causal Models

The causal model $\mathbb{M}_{\mathrm{I}}[D \rightarrow 0]$:

$$
\begin{aligned}
& \mathbb{U}:(A, C, D) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{o}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \vee D}{B:=A \wedge \neg C}
\end{aligned}
$$

Counterfactuals in Causal Models

The causal model $\mathbb{M}_{\mathbf{I}}[D \rightarrow 0]$:

$$
\begin{aligned}
& \mathbb{U}:(A, C, D) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{o}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \vee D}{B:=A \wedge \neg C}
\end{aligned}
$$

Counterfactuals in Causal Models

Counterfactual Models

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, including the variables \mathbf{V}, and given the assignment of values \mathbf{v} to \mathbf{V}, the counterfactual model $\mathbb{M}[\mathbf{V} \rightarrow \mathbf{v}]=(\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}], \vec{u}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]$, $\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}])$ is the model such that:

$$
\begin{aligned}
& \mathbb{V}[\mathbf{V} \rightarrow \mathrm{v}]=\mathbb{V}-\mathbf{V} \\
& \mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{U} \cup \mathbf{V} \\
& \mathbb{E} \cdot[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{F},-\left(\phi_{\ldots} \mid V_{i} \in \mathbb{V}\right) \\
& \vec{u}[\mathbf{V} \rightarrow \mathbf{v}]=\vec{u} \cup \mathbf{v} \\
& \mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}]=\mathscr{D}
\end{aligned}
$$

Counterfactuals in Causal Models

Counterfactual Models

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, including the variables \mathbf{V}, and given the assignment of values \mathbf{v} to \mathbf{V}, the counterfactual model $\mathbb{M}[\mathbf{V} \rightarrow \mathbf{v}]=(\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}], \vec{u}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]$, $\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}])$ is the model such that:

- $\mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{V}-\mathbf{V}$

$$
\begin{aligned}
& \text { - } \mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{U} \cup \mathbf{V} \\
& \text { - } \mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{E}-\left(\phi_{V_{i}} \mid V_{i} \in \mathbf{V}\right)
\end{aligned}
$$

$$
\vec{u}[\mathbf{V} \rightarrow \mathbf{v}]=\vec{u} \cup \mathbf{v}
$$

$$
\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}]=\mathscr{D}
$$

Counterfactuals in Causal Models

Counterfactual Models

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, including the variables \mathbf{V}, and given the assignment of values \mathbf{v} to \mathbf{V}, the counterfactual model $\mathbb{M}[\mathbf{V} \rightarrow \mathbf{v}]=(\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}], \vec{u}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]$, $\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}])$ is the model such that:

- $\mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{V}-\mathbf{V}$
- $\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{U} \cup \mathbf{V}$
- $\mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{E}-\left(\phi_{V_{i}} \mid V_{i} \in \mathbf{V}\right)$
- $\vec{u}[\mathbf{V} \rightarrow \mathbf{v}]=\vec{u} \cup \mathbf{v}$
$\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}]=$ 力

Counterfactuals in Causal Models

Counterfactual Models

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, including the variables \mathbf{V}, and given the assignment of values \mathbf{v} to \mathbf{V}, the counterfactual model $\mathbb{M}[\mathbf{V} \rightarrow \mathbf{v}]=(\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}], \vec{u}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]$, $\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}])$ is the model such that:

- $\mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{V}-\mathbf{V}$
- $\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{U} \cup \mathbf{V}$
- $\mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{E}-\left(\phi_{V_{i}} \mid V_{i} \in \mathbf{V}\right)$
$\vec{u}[\mathbf{V} \rightarrow \mathbf{v}]=\vec{u} \cup \mathbf{v}$
- $\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}]=\mathscr{D}$

Counterfactuals in Causal Models

Counterfactual Models

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, including the variables \mathbf{V}, and given the assignment of values \mathbf{v} to \mathbf{V}, the counterfactual model $\mathbb{M}[\mathbf{V} \rightarrow \mathbf{v}]=(\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}], \vec{u}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]$, $\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}])$ is the model such that:

- $\mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{V}-\mathbf{V}$
- $\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{U} \cup \mathbf{V}$
- $\mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{E}-\left(\phi_{V_{i}} \mid V_{i} \in \mathbf{V}\right)$
- $\vec{u}[\mathbf{V} \rightarrow \mathbf{v}]=\vec{u} \cup \mathbf{v}$

Counterfactuals in Causal Models

Counterfactual Models

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, including the variables \mathbf{V}, and given the assignment of values \mathbf{v} to \mathbf{V}, the counterfactual model $\mathbb{M}[\mathbf{V} \rightarrow \mathbf{v}]=(\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}], \vec{u}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}], \mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]$, $\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}])$ is the model such that:

- $\mathbb{V}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{V}-\mathbf{V}$
- $\mathbb{U}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{U} \cup \mathbf{V}$
- $\mathbb{E}[\mathbf{V} \rightarrow \mathbf{v}]=\mathbb{E}-\left(\phi_{V_{i}} \mid V_{i} \in \mathbf{V}\right)$
- $\vec{u}[\mathbf{V} \rightarrow \mathbf{v}]=\vec{u} \cup \mathbf{v}$
- $\mathscr{D}[\mathbf{V} \rightarrow \mathbf{v}]=\mathscr{D}$

Counterfactuals in Causal Models

Causal Counterfactuals

In a causal model \mathbb{M}, containing the variables in \mathbf{V}, the causal counterfactual $\mathbf{V}=\mathbf{v} \square \rightarrow \psi$ is true iff ψ is true in the counterfactual model $\mathbb{M}[\mathbf{V} \rightarrow \mathbf{v}]$,

$$
\mathbb{M} \models \mathbf{V}=\mathbf{v} \square \rightarrow \psi \Longleftrightarrow \mathbb{M}[\mathbf{V} \rightarrow \mathbf{v}] \models \psi
$$

Defaults in Causal Models

$$
\begin{aligned}
E & :=B \vee D \\
D & :=C \\
B & :=A \wedge \neg C \\
A & =\mathrm{I} \\
C & =\mathrm{I}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{e}:=\bar{b} \vee d \\
& d:=c \\
& \bar{b}:=\bar{a} \wedge \neg c \\
& \bar{a}=\mathrm{I} \\
& c=\mathrm{I}
\end{aligned}
$$

Model Invariance

Model Invariance

Model Invariance

Given any two causal models, \mathbb{M} and \mathbb{M}^{*}, which both contain the variables C and E, if both \mathbb{M} and \mathbb{M}^{*} are correct, then $C=c$ caused $E=e$ in \mathbb{M} iff $C=c$ caused $E=e$ in \mathbb{M}^{*}.

Exogenous Reduction

Exogenous Reduction

The model \mathbb{M} :

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{o}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M} :

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{o}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{o}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{o}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{O}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg \mathrm{O})
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C)
\end{aligned}
$$

Exogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $U \in \mathbb{U}$, then let \mathbb{M}^{-U} be the model that you get by:
- Removing U from \mathbb{U}
- Removing U_{s} value from \vec{u}
- Exogenizing any variables in \mathbb{V} whose only parent was U
- Replacing U for its value in every structural equation in \mathbb{E}
- Removing default information about U from \mathscr{D}.

Exogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $U \in \mathbb{U}$, then let \mathbb{M}^{-U} be the model that you get by:
- Removing U from \mathbb{U}
- Removing Us value from \vec{u}
- Exogenizing any variables in \mathbb{V} whose only parent was U
- Replacing U for its value in every structural equation in \mathbb{E}
- Removing default information about U from \mathscr{D}.

Exogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $U \in \mathbb{U}$, then let \mathbb{M}^{-U} be the model that you get by:
- Removing U from \mathbb{U}
- Removing U_{s} value from \vec{u}
- Exogenizing any variables in \mathbb{V} whose only parent was U
- Replacing U for its value in every structural equation in \mathbb{E}
- Remaving default information ahout Ufrom O

Exogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $U \in \mathbb{U}$, then let \mathbb{M}^{-U} be the model that you get by:
- Removing U from \mathbb{U}
- Removing U_{s} value from \vec{u}
- Exogenizing any variables in \mathbb{V} whose only parent was U
- Replacing U for its value in every structural equation in \mathbb{E}
- Removing default information about U from \mathscr{D}.

Exogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $U \in \mathbb{U}$, then let \mathbb{M}^{-U} be the model that you get by:
- Removing U from \mathbb{U}
- Removing U_{s} value from \vec{u}
- Exogenizing any variables in \mathbb{V} whose only parent was U
- Replacing U for its value in every structural equation in \mathbb{E}
- Removing default information about U from \mathscr{D}.

Exogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $U \in \mathbb{U}$, then let \mathbb{M}^{-U} be the model that you get by:
- Removing U from \mathbb{U}
- Removing U_{s} value from \vec{u}
- Exogenizing any variables in \mathbb{V} whose only parent was U
- Replacing U for its value in every structural equation in \mathbb{E}
- Removing default information about U from \mathscr{D}.

Exogenous Reduction

The model \mathbb{M} :

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg A)
\end{aligned}
$$

Exogenous Reduction

The model \mathbb{M}^{-A} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=C \wedge \neg \mathrm{I})
\end{aligned}
$$

Exogenous Reduction

- If every equation in \mathbb{M}^{-U} is surjective, then say that U is an inessential variable.

Exogenous Reduction

- If every equation in \mathbb{M}^{-U} is surjective, then say that U is an inessential variable.

Exogenous Reduction

If a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is correct, and $U \in \mathbb{U}$ is inessential, then \mathbb{M}^{-U} is also correct.

Endogenous Reduction

Model Variance

The model \mathbb{M} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(B, D, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B \wedge \neg D \\
D:=C \\
B:=C
\end{array}\right)
\end{aligned}
$$

Model Variance

The model \mathbb{M}^{-B} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(B, D, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B \wedge \neg D \\
D:=C \\
B:=C
\end{array}\right)
\end{aligned}
$$

Model Variance

The model \mathbb{M}^{-B} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(D, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B \wedge \neg D \\
D:=C \\
B:=C
\end{array}\right)
\end{aligned}
$$

Model Variance

The model \mathbb{M}^{-B} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(D, E) \\
& \mathbb{E}:\binom{E:=C \wedge \neg D}{D:=C}
\end{aligned}
$$

Model Variance

The model \mathbb{M}^{-B} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(D, E) \\
& \mathbb{E}:\binom{E:=C \wedge \neg D}{D:=C}
\end{aligned}
$$

Endogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $V \in \mathbb{V}$, then let \mathbb{M}^{-V} be the model that you get by:
- Leaving U alone
- Leaving \vec{u} alone
- Removing V from V
- Removing ϕ_{V} from \mathbb{E}, and replacing V with $\phi_{V}(\mathbb{P A}(V))$ wherever V appears on the right-hand-side of an equation in
\mathbb{E}
- Removing default information about Vfrom \mathscr{D}

Endogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $V \in \mathbb{V}$, then let \mathbb{M}^{-V} be the model that you get by:
- Leaving \mathbb{U} alone
- Leaving \vec{u} alone
- Removing V from \mathbb{V}
- Removing ϕ_{V} from \mathbb{E}, and replacing V with $\phi_{V}(\mathrm{PA}(V))$ wherever V appears on the right-hand-side of an equation in E
- Removing default information about V from D

Endogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $V \in \mathbb{V}$, then let \mathbb{M}^{-V} be the model that you get by:
- Leaving \mathbb{U} alone
- Leaving \vec{u} alone
- Removing V from \mathbb{V}
- Removing ϕ_{V} from \mathbb{E}, and replacing V with $\phi_{V}(\mathbf{P A}(V))$ wherever V appears on the right-hand-side of an equation in
E
- Removing default information about V from \mathscr{D}

Endogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $V \in \mathbb{V}$, then let \mathbb{M}^{-V} be the model that you get by:
- Leaving \mathbb{U} alone
- Leaving \vec{u} alone
- Removing V from \mathbb{V}
- Removing ϕ_{V} from \mathbb{E}, and replacing V with $\phi_{V}(\mathbf{P A}(V))$ wherever V appears on the right-hand-side of an equation in \mathbb{E}
- Removing default information about V from \mathscr{D}

Endogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $V \in \mathbb{V}$, then let \mathbb{M}^{-V} be the model that you get by:
- Leaving \mathbb{U} alone
- Leaving \vec{u} alone
- Removing V from \mathbb{V}
- Removing ϕ_{V} from \mathbb{E}, and replacing V with $\phi_{V}(\mathbf{P A}(V))$ wherever V appears on the right-hand-side of an equation in \mathbb{E}
- Removing default information about Vfrom \mathscr{D}

Endogenous Reduction

- If $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is a causal model with $V \in \mathbb{V}$, then let \mathbb{M}^{-V} be the model that you get by:
- Leaving \mathbb{U} alone
- Leaving \vec{u} alone
- Removing V from \mathbb{V}
- Removing ϕ_{V} from \mathbb{E}, and replacing V with $\phi_{V}(\mathbf{P A}(V))$ wherever V appears on the right-hand-side of an equation in \mathbb{E}
- Removing default information about V from \mathscr{D}

Endogenous Reduction

Figure 1: Preemptive Overdetermination

Endogenous Reduction

The model $\mathbb{M}_{\mathbf{r}}$:

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B \vee D \\
D:=C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Endogenous Reduction

The model $\mathbb{M}_{\mathrm{I}}^{-D}$:

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \vee C}{B:=A \wedge \neg C}
\end{aligned}
$$

Endogenous Reduction

The model $\mathbb{M}_{\mathrm{I}}^{-D,-B}$:

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=(A \wedge \neg C) \vee C)
\end{aligned}
$$

Endogenous Reduction

The model $\mathbb{M}_{\mathrm{I}}^{-D,-B}$:

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=A \vee C)
\end{aligned}
$$

Endogenous Reduction

The model \mathbb{M}_{5}^{-B} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(D, E) \\
& \mathbb{E}:\binom{E:=C \wedge \neg D}{D:=C}
\end{aligned}
$$

Endogenous Reduction

The model \mathbb{M}_{5}^{-B} :

$$
\begin{aligned}
& \mathbb{U}:(C) \\
& \vec{u}:(\mathrm{I}) \\
& \mathbb{V}:(D, E) \\
& \mathbb{E}:\binom{E:=C \wedge \neg D}{D:=C}
\end{aligned}
$$

Endogenous Reduction

- If V has a single parent, $P a$, and a single child, $C h$, and if Pa is not also a parent of $C h$, then say that V is an interpolated variable.

$$
\ldots P a \rightarrow V \rightarrow C h \ldots
$$

- If V is interpolated, and the equations in \mathbb{M}^{-V} are surjective, then say that V is inessential.

> Endogenous Reduction
> If a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is correct, and $V \in \mathbb{V}$ is an inessential variable, then \mathbb{M}^{-V} is also correct.

Endogenous Reduction

- If V has a single parent, $P a$, and a single child, $C h$, and if Pa is not also a parent of $C h$, then say that V is an interpolated variable.

$$
\ldots P a \rightarrow V \rightarrow C h \ldots
$$

- If V is interpolated, and the equations in \mathbb{M}^{-V} are surjective, then say that V is inessential.

Endogenous Reduction

- If V has a single parent, $P a$, and a single child, $C h$, and if Pa is not also a parent of $C h$, then say that V is an interpolated variable.

$$
\ldots P a \rightarrow V \rightarrow C h \ldots
$$

- If V is interpolated, and the equations in \mathbb{M}^{-V} are surjective, then say that V is inessential.

Endogenous Reduction

If a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$ is correct, and $V \in \mathbb{V}$ is an inessential variable, then \mathbb{M}^{-V} is also correct.

Model Invariance

- The accounts of Hitchcock (2001, 2007), Halpern \& Pearl (2001, 2005), Woodward (2003), Halpern (2008), and Weslake (forthcoming) are all inconsistent with Model Invariance, Exogenous Reduction, and Endogenous Reduction.

A Model Invariant Theory

A Model Invariant Theory

- I will present a theory of causation in terms of structural equations models which is consistent with Endogenous Reduction, Exogenous Reduction, and Model Invariance.
- I'll build up the theory by progressing through some familiar cases from the literature.

A Model Invariant Theory

- I will present a theory of causation in terms of structural equations models which is consistent with Endogenous Reduction, Exogenous Reduction, and Model Invariance.
- I'll build up the theory by progressing through some familiar cases from the literature.

A Model Invariant Theory

Preemptive Overdetermination

Preemptive Overdetermination

Figure 2: Preemptive Overdetermination

Preemptive Overdetermination

The model \mathbb{M}_{2} :

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \vee C}{B:=A \wedge \neg C}
\end{aligned}
$$

Preemptive Overdetermination

The model $\mathbb{M}_{2}[C \rightarrow$ $]$:

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{o}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \vee C}{B:=A \wedge \neg C}
\end{aligned}
$$

Preemptive Overdetermination

The model \mathbb{M}_{2} :

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \vee C}{B:=A \wedge \neg C}
\end{aligned}
$$

Preemptive Overdetermination

The local model $\mathbb{M}_{2}((E))$:

$$
\begin{aligned}
& \mathbb{U}:(C, B) \\
& \vec{u}:(\mathrm{I}, \circ) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=B \vee C)
\end{aligned}
$$

Preemptive Overdetermination

The model $\mathbb{M}_{2}((E))$:

$$
\begin{aligned}
& \mathbb{U}:(C, B) \\
& \vec{u}:(\mathrm{I}, \mathrm{o}) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=B \vee C)
\end{aligned}
$$

Preemptive Overdetermination

The model $\mathbb{M}_{2}((E))[C \rightarrow 0]$:

$$
\begin{aligned}
& \mathbb{U}:(C, B) \\
& \vec{u}:(0, o) \\
& \mathbb{V}:(E) \\
& \mathbb{E}:(E:=B \vee C)
\end{aligned}
$$

Local Models

Local Model

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $E \in \mathbb{V}$, the local model at $E, \mathbb{M}((E))$, is the causal model in which

> The exogenous variables are just the parents of $E, \mathbf{P A}(E)$, in the original model \mathbb{M};

> The exogenous variables $\mathbf{P A}(E)$ are assigned the values they take on in \mathbb{M};

> The sole endogenous variable is E;
> The sole structural equation is E s structural equation in \mathbb{M}, o: and

> The defaults for E and $\mathbf{P A}(E)$ are the same as in \mathbb{M}.

Local Models

Local Model

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $E \in \mathbb{V}$, the local model at $E, \mathbb{M}((E))$, is the causal model in which
(a) The exogenous variables are just the parents of $E, \mathbf{P A}(E)$, in the original model \mathbb{M};

The exogenous variables $\mathrm{PA}(E)$ are assigned the values they take on in \mathbb{M};

The sole endomenous variable is E;
The sole structural equation is E s structural equation in \mathbb{M}, ϕ_{E}; and

The defaults for E and $\operatorname{PA}(E)$ are the same as in \mathbb{M}.

Local Models

Local Model

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $E \in \mathbb{V}$, the local model at $E, \mathbb{M}((E))$, is the causal model in which
(a) The exogenous variables are just the parents of $E, \mathbf{P A}(E)$, in the original model \mathbb{M};
(b) The exogenous variables $\mathbf{P A}(E)$ are assigned the values they take on in \mathbb{M};

The sole endogenous variable is E;
The sole structural equation is E s structural equation in \mathbb{M}, ϕ_{E}; and
The defaults for E and $\mathrm{PA}(E)$ are the same as in \mathbb{M}.

Local Models

Local Model

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $E \in \mathbb{V}$, the local model at $E, \mathbb{M}((E))$, is the causal model in which
(a) The exogenous variables are just the parents of $E, \mathbf{P A}(E)$, in the original model \mathbb{M};
(b) The exogenous variables $\mathbf{P A}(E)$ are assigned the values they take on in \mathbb{M};
(c) The sole endogenous variable is E;

The sole structural equation is $E_{\text {s structural equation in } \mathbb{M} \text {, }}^{\text {s }}$ ϕ_{E}; and

The default for E and $\operatorname{PA}(E)$ are the same as in \mathbb{M}.

Local Models

Local Model

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $E \in \mathbb{V}$, the local model at $E, \mathbb{M}((E))$, is the causal model in which
(a) The exogenous variables are just the parents of $E, \mathbf{P A}(E)$, in the original model \mathbb{M};
(b) The exogenous variables $\mathbf{P A}(E)$ are assigned the values they take on in \mathbb{M};
(c) The sole endogenous variable is E;
(d) The sole structural equation is E s structural equation in \mathbb{M}, ϕ_{E}; and
The defaults for E and $\operatorname{PA}(E)$ are the same as in \mathbb{M}.

Local Models

Local Model

Given a causal model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $E \in \mathbb{V}$, the local model at $E, \mathbb{M}((E))$, is the causal model in which
(a) The exogenous variables are just the parents of $E, \mathbf{P A}(E)$, in the original model \mathbb{M};
(b) The exogenous variables $\mathbf{P A}(E)$ are assigned the values they take on in \mathbb{M};
(c) The sole endogenous variable is E;
(d) The sole structural equation is E s structural equation in \mathbb{M}, ϕ_{E}; and
(e) The defaults for E and $\mathbf{P A}(E)$ are the same as in \mathbb{M}.

Local Counterfactual Dependence

- $E=e$ locally counterfactually depends upon $C=c$ iff, in the local model at $E, \mathbb{M}((E))$, there's some $c^{*} \neq c, e^{*} \neq e$ such that

$$
\mathbb{M}((E)) \mid=C=c^{*} \square \rightarrow E=e^{*}
$$

- A (preliminary) proposal: either local or global counterfactual dependence suffices for causation.

Local Counterfactual Dependence

- $E=e$ locally counterfactually depends upon $C=c$ iff, in the local model at $E, \mathbb{M}((E))$, there's some $c^{*} \neq c, e^{*} \neq e$ such that

$$
\mathbb{M}((E)) \mid=C=c^{*} \square \rightarrow E=e^{*}
$$

- A (preliminary) proposal: either local or global counterfactual dependence suffices for causation.

Local Counterfactual Dependence

- $E=e$ locally counterfactually depends upon $C=c$ iff, in the local model at $E, \mathbb{M}((E))$, there's some c^{*}, e^{*} such that

$$
\mathbb{M}((E)) \mid=C=c^{*} \square \rightarrow E=e^{*}
$$

- A (preliminary) proposal: either local or global counterfactual dependence suffices for causation.

Local Counterfactual Dependence

- $E=e$ locally counterfactually depends upon $C=c$ iff, in the local model at $E, \mathbb{M}((E))$, there's some c^{*}, e^{*} such that

$$
\mathbb{M}((E)) \mid=C=c^{*} \square \rightarrow E=e^{*}
$$

- A (preliminary) proposal: either local or global counterfactual dependence suffices for causation.

Local Counterfactual Dependence

Figure 2: Preemptive Overdetermination

Local Counterfactual Dependence

Figure 1: Preemptive Overdetermination

A Model Invariant Theory

Counterexamples to Transitivity

Transitivity

- Sometimes, we trace out a sequence of causal relations and conclude that the first event in the chain caused the last.
- If we can do this, then let's say that the chain of causal relations is transitive
- When is a chain of causal relations transitive?

Transitivity

- Sometimes, we trace out a sequence of causal relations and conclude that the first event in the chain caused the last.
- If we can do this, then let's say that the chain of causal relations is transitive
- When is a chain of causal relations transitive?

Transitivity

- Sometimes, we trace out a sequence of causal relations and conclude that the first event in the chain caused the last.
- If we can do this, then let's say that the chain of causal relations is transitive
- When is a chain of causal relations transitive?
- Lewis said 'Always', but this answer comes at a cost
- The answer to give: 'Sometimes, but not always'.

Transitivity

- Sometimes, we trace out a sequence of causal relations and conclude that the first event in the chain caused the last.
- If we can do this, then let's say that the chain of causal relations is transitive
- When is a chain of causal relations transitive?
- Lewis said 'Always', but this answer comes at a cost
- The answer to give: 'Sometimes, but not always'

Transitivity

- Sometimes, we trace out a sequence of causal relations and conclude that the first event in the chain caused the last.
- If we can do this, then let's say that the chain of causal relations is transitive
- When is a chain of causal relations transitive?
- Lewis said 'Always', but this answer comes at a cost
- The answer to give: 'Sometimes, but not always'.

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:

Counterexamples to Transitivity

Figure 3: Tampering

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:
For each variable V_{i} along \mathbf{P}, there is a pair $\left(v_{i}, v_{i}^{*}\right)$ of $V_{i}^{\prime} s$ actual value v_{i} in \mathbb{M}, and a contrast value v_{i}^{*},

$$
\left(v_{1}, v_{1}^{*}\right) \rightarrow\left(v_{2}, v_{2}^{*}\right) \rightarrow\left(v_{3}, v_{3}^{*}\right) \rightarrow \cdots \rightarrow\left(v_{N}, v_{N}^{*}\right)
$$

such that: for all j between I and $N-\mathrm{I}, V_{j}^{\prime}$'s taking on the value v_{j}, rather than v_{j}^{*}, caused $V_{j+\mathrm{r}}$ to take on the value $v_{j+\tau}$, rather than $v_{j+\mathrm{r}}^{*}$;

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:
(a) For each variable V_{i} along \mathbf{P}, there is a pair $\left(v_{i}, v_{i}^{*}\right)$ of $V_{i}^{\prime} \mathrm{s}$ actual value v_{i} in \mathbb{M}, and a contrast value v_{i}^{*},

$$
\left(v_{\mathrm{I}}, v_{\mathrm{I}}^{*}\right) \rightarrow\left(v_{2}, v_{2}^{*}\right) \rightarrow\left(v_{3}, v_{3}^{*}\right) \rightarrow \cdots \rightarrow\left(v_{N}, v_{N}^{*}\right)
$$

such that: for all j between I and $N-\mathrm{I}, V_{j}^{\prime}$'s taking on the value v_{j}, rather than v_{j}^{*}, caused $V_{j+\mathrm{I}}$ to take on the value $v_{j+\mathrm{I}}$, rather than $v_{j+\mathrm{I}}^{*}$;

Causes and Contrasts

- Contrastivism gives us a 4-place causal relation:

$$
\operatorname{Cause}\left(C=c, C=c^{*}, E=e, E=e^{*}\right)
$$

- From this, we may recover a familiar 2-place causal relation:
$\operatorname{Cause}(C=c, E=e) \Longleftrightarrow \exists c^{*} \exists e^{*} \operatorname{Cause}\left(C=c, C=c^{*}, E=e, E=e^{*}\right)$

Causes and Contrasts

- Contrastivism gives us a 4-place causal relation:

$$
\operatorname{Cause}\left(C=c, C=c^{*}, E=e, E=e^{*}\right)
$$

- From this, we may recover a familiar 2-place causal relation:

$$
\operatorname{Cause}(C=c, E=e) \Longleftrightarrow \exists c^{*} \exists e^{*} \operatorname{Cause}\left(C=c, C=c^{*}, E=e, E=e^{*}\right)
$$

Counterexamples to Transitivity

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{\mathrm{I}} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:

$$
\begin{aligned}
& \text { For each variable } V_{i} \text { along this path, there is a pair }\left(v_{i}, v_{i}^{*}\right) \text { of } \\
& V_{i}^{\prime} \text { s actual value } v_{i} \text { in } \mathbb{M} \text {, and a contrast value } v_{i}^{*} \text {, } \\
& \qquad\left(v_{\mathrm{I}}, v_{1}^{*}\right) \rightarrow\left(v_{2}, v_{2}^{*}\right) \rightarrow\left(v_{3}, v_{3}^{*}\right) \rightarrow \cdots \rightarrow\left(v_{N}, v_{N}^{*}\right)
\end{aligned}
$$

such that: for all j between I and $N-\mathrm{I}, V_{j}^{\prime}$'s taking on the value v_{i}, rather than v_{j}^{*}, caused $V_{i+\mathrm{r}}$ to take on the value $v_{i+\tau}$, rather than $v_{j+\mathrm{x}}^{*}$;

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:
(a) For each variable V_{i} along this path, there is a pair $\left(v_{i}, v_{i}^{*}\right)$ of V_{i}^{\prime} s actual value v_{i} in \mathbb{M}, and a contrast value v_{i}^{*},

$$
\left(v_{\mathrm{I}}, v_{\mathrm{I}}^{*}\right) \rightarrow\left(v_{2}, v_{2}^{*}\right) \rightarrow\left(v_{3}, v_{3}^{*}\right) \rightarrow \cdots \rightarrow\left(v_{N}, v_{N}^{*}\right)
$$

such that: for all j between I and $N-\mathrm{I}, V_{j}^{\prime}$'s taking on the value v_{j}, rather than v_{j}^{*}, caused $V_{j+\mathrm{I}}$ to take on the value $v_{j+\mathrm{I}}$, rather than $v_{j+\mathrm{I}}^{*}$;

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:
(b) Both V_{I} 's and V_{N} 's actual values are deviant, their contrast values default;

Short Circuit, again

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{\mathrm{I}} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:

$$
\begin{aligned}
& \text { For each variable } V_{i} \text { along this path, there is a pair }\left(v_{i}, v_{i}^{*}\right) \text { of } \\
& V_{i}^{\prime} \text { s actual value } v_{i} \text { in } \mathbb{M} \text {, and a contrast value } v_{i}^{*} \text {, } \\
& \qquad\left(v_{\mathrm{I}}, v_{1}^{*}\right) \rightarrow\left(v_{2}, v_{2}^{*}\right) \rightarrow\left(v_{3}, v_{3}^{*}\right) \rightarrow \cdots \rightarrow\left(v_{N}, v_{N}^{*}\right)
\end{aligned}
$$

such that: for all j between I and $N-\mathrm{I}, V_{j}^{\prime}$'s taking on the value v_{i}, rather than v_{j}^{*}, caused $V_{i+\mathrm{r}}$ to take on the value $v_{j+\tau}$, rather than $v_{j+\mathrm{r}}^{*}$;

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:
(a) For each variable V_{i} along this path, there is a pair $\left(v_{i}, v_{i}^{*}\right)$ of V_{i}^{\prime} s actual value v_{i} in \mathbb{M}, and a contrast value v_{i}^{*},

$$
\left(v_{\mathrm{I}}, v_{\mathrm{I}}^{*}\right) \rightarrow\left(v_{2}, v_{2}^{*}\right) \rightarrow\left(v_{3}, v_{3}^{*}\right) \rightarrow \cdots \rightarrow\left(v_{N}, v_{N}^{*}\right)
$$

such that: for all j between I and $N-\mathrm{I}, V_{j}^{\prime}$'s taking on the value v_{j}, rather than v_{j}^{*}, caused $V_{j+\mathrm{I}}$ to take on the value $v_{j+\mathrm{I}}$, rather than $v_{j+\mathrm{I}}^{*}$;

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:
(b) Both V_{I}^{\prime} 's and V_{N} 's actual values are deviant, their contrast values default;
Every departure variable along P causes each of its return variables along \mathbf{P}.

Transitive Path

Transitive Path

In a causal model \mathbb{M}, a directed path \mathbf{P}

$$
\mathbf{P}: V_{\mathrm{I}} \rightarrow V_{2} \rightarrow V_{3} \rightarrow \cdots \rightarrow V_{N}
$$

is a transitive path iff:
(b) Both V_{I}^{\prime} 's and V_{N} 's actual values are deviant, their contrast values default;
(c) Every departure variable along \mathbf{P} causes each of its return variables along \mathbf{P}.

A Model Invariant Theory

Preemption and Omission without
Dependence?

Default Causes and Effects

- So far, we've only looked at causes and effects whose values are deviant
- Default variable values can also be causes and effects.

Default Causes and Effects

- So far, we've only looked at causes and effects whose values are deviant
- Default variable values can also be causes and effects.

Prevention

Prevention

Omission

Omission

Prevention without Dependence?

- When $C=c$ and $E=e$ are deviant, local counterfactual dependence suffices for causation.
- Does local counterfactual dependence suffice for causation when $C=c$ or $E=e$ are default, too?

Prevention without Dependence?

- When $C=c$ and $E=e$ are deviant, local counterfactual dependence suffices for causation.
- Does local counterfactual dependence suffice for causation when $C=c$ or $E=e$ are default, too?

Prevention without Dependence?

Figure 8: Prevention without Dependence?

Prevention without Dependence?

Figure 8: Prevention without Dependence?

Prevention without Dependence?

The model \mathbb{M}_{7} :

$$
\begin{aligned}
& \mathbb{U}:(A, C, F) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{U}:\binom{E:=F \wedge \neg B \wedge \neg D}{B:=A \wedge \neg C}
\end{aligned}
$$

Prevention without Dependence?

The local model $\mathbb{M}_{7}((E))$:
$\mathbb{U}:(B, C, F)$
$\vec{u}:(\mathrm{O}, \mathrm{I}, \mathrm{I})$
$\mathbb{V}:(E)$
$\mathbb{U}:(E:=F \wedge \neg B \wedge \neg D)$

Prevention without Dependence?

The model $\mathbb{M}_{7}((E))$:

$$
\begin{aligned}
& \mathbb{U}:(B, C, F) \\
& \vec{u}:(\mathrm{O}, \mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(E) \\
& \mathbb{U}:(E:=F \wedge \neg B \wedge \neg D)
\end{aligned}
$$

Prevention without Dependence?

The model $\mathbb{M}_{7}((E))[C \rightarrow$ o]:

$$
\begin{aligned}
& \mathbb{U}:(B, C, F) \\
& \vec{u}:(\mathrm{o}, \mathrm{o}, \mathrm{I})
\end{aligned}
$$

Prevention without Dependence?

Figure 7: Prevention without Dependence?

Prevention without Dependence?

Figure 7: Prevention without Dependence?

Prevention without Dependence?

Figure 8: Prevention without Dependence?

Prevention without Dependence?

$$
\begin{aligned}
& \mathbb{U}:(A, C, D) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \wedge \neg D}{B:=A \wedge \neg C}
\end{aligned}
$$

Prevention without Dependence?

$$
\begin{aligned}
& \mathbb{U}:(A, C, D) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \wedge \neg D}{B:=A \wedge \neg C}
\end{aligned}
$$

Prevention without Dependence?

$$
\begin{aligned}
& \mathbb{U}:(C, D) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \wedge \neg D}{B:=\mathrm{I} \wedge \neg C}
\end{aligned}
$$

Prevention without Dependence?

$$
\begin{aligned}
& \mathbb{U}:(C, D) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \wedge \neg D}{B:=\neg C}
\end{aligned}
$$

Prevention without Dependence?

$$
\begin{aligned}
& \mathbb{U}:(C, D) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \wedge \neg D}{B:=\neg C}
\end{aligned}
$$

Prevention without Dependence?

$\mathbb{U}:(C, D)$

$$
\vec{u}:(\mathrm{I}, \mathrm{I})
$$

$$
\mathbb{V}:(E)
$$

$$
\mathbb{E}:(E:=\neg C \wedge \neg D)
$$

Prevention without Dependence?

- Any model-invariant account must say that C s firing kept E from firing iff D 's firing kept E from firing.

Prevention without Dependence?

- Any model-invariant account must say that C s firing kept E from firing iff D 's firing kent F from firing.

Omission without Dependence?

Figure 9: Omission without Dependence?

Omission without Dependence?

Omission without Dependence?

Omission without Dependence?

Omission without Dependence?

Omission without Dependence?

Omission without Dependence?

Omission without Dependence?

$\mathbb{U}:(A, C, B)$
$\vec{u}:(\mathrm{I}, \mathrm{o}, \mathrm{o})$
$\mathbb{V}:(E)$
$\mathbb{E}:(E:=(A+B)>C)$

Omission without Dependence?

$\mathbb{U}:(A, C, B)$
$\vec{u}:(\mathrm{I}, \mathrm{o}, \mathrm{o})$
$\mathbb{V}:(E)$
$\mathbb{E}:(E:=(A+B)>C)$

Omission without Dependence?

Omission without Dependence?

Figure 9: Omission without Dependence?

Omission without Dependence?

Figure 9: Omission without Dependence?

Local Dependence

- If our account is to be model-invariant, and we accept Transitive Path, then there can be no prevention or omission without global counterfactual dependence.
- Local counterfactual dependence only suffices for causation when

Local Dependence

- If our account is to be model-invariant, and we accept Transitive Path, then there can be no prevention or omission without global counterfactual dependence.
- Local counterfactual dependence only suffices for causation when
- Both c and e are deviant values (and both c^{*} and e^{*} default)

Local Dependence

- If our account is to be model-invariant, and we accept Transitive Path, then there can be no prevention or omission without global counterfactual dependence.
- Local counterfactual dependence only suffices for causation when
- Both c and e are deviant values (and both c^{*} and e^{*} default)

A Model Invariant Theory

Causation as Production and Dependence

Causation as Production and Dependence

Causation as Production and Dependence

In a causal model \mathbb{M}, C s taking on the value c, rather than c^{*}, caused E to take on the value e, rather than e^{*}, iff either (Prod) or (Dep).

Both c and e are deviant variable values, the contrasts c^{*} and e^{*} defaults, and either:

Causation as Production and Dependence

Causation as Production and Dependence

In a causal model \mathbb{M}, Cs taking on the value c, rather than c^{*}, caused E to take on the value e, rather than e^{*}, iff either (Prod) or (Dep).
(Prod) Both c and e are deviant variable values, the contrasts c^{*} and e^{*} defaults, and either:

In the local model at $E, \mathbb{M}((E))$, had C taken on the value c^{*},
E would have taken on the value e^{*},
or
In $\mathbb{M} \mathbb{A}$, there is a transitive path leading from C to E.

Causation as Production and Dependence

Causation as Production and Dependence

In a causal model \mathbb{M}, Cs taking on the value c, rather than c^{*}, caused E to take on the value e, rather than e^{*}, iff either (Prod) or (Dep).
(Prod) Both c and e are deviant variable values, the contrasts c^{*} and e^{*} defaults, and either:
i. In the local model at $E, \mathbb{M}((E))$, had C taken on the value c^{*}, E would have taken on the value e^{*},

$$
\mathbb{M}((E)) \mid=C=c^{*} \square \rightarrow E=e^{*}
$$

or
In \mathbb{M}, there is a transitive path leading from C to E.

Causation as Production and Dependence

Causation as Production and Dependence

In a causal model \mathbb{M}, C s taking on the value c, rather than c^{*}, caused E to take on the value e, rather than e^{*}, iff either (Prod) or (Dep).
(Prod) Both c and e are deviant variable values, the contrasts c^{*} and e^{*} defaults, and either:
i. In the local model at $E, \mathbb{M}((E))$, had C taken on the value c^{*}, E would have taken on the value e^{*},

$$
\mathbb{M}((E)) \mid=C=c^{*} \square \longrightarrow E=e^{*}
$$

or
ii. In \mathbb{M}, there is a transitive path leading from C to E.

Causation as Production and Dependence

Causation as Production and Dependence

In a causal model \mathbb{M}, C s taking on the value c, rather than c^{*}, caused E to take on the value e, rather than e^{*}, iff either (Prod) or (Dep).

In \mathbb{M}, had C taken on the value c^{*}, E would have taken on the value e^{*},

$$
\mathbb{M} \models C=c^{*} \square \longrightarrow E=e^{*}
$$

Causation as Production and Dependence

Causation as Production and Dependence

In a causal model \mathbb{M}, C s taking on the value c, rather than c^{*}, caused E to take on the value e, rather than e^{*}, iff either (Prod) or (Dep).
(Dep) In \mathbb{M}, had C taken on the value c^{*}, E would have taken on the value e^{*},

$$
\mathbb{M} \models C=c^{*} \square \longrightarrow E=e^{*}
$$

Model-Invariance

- Suppose that we have a correct model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $U \in \mathbb{U}$ and $V \in \mathbb{V}$.
- Neither U nor V are C or E
- U and V are both inessential
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-u} - If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-V}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-U}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-V}

Model-Invariance

- Suppose that we have a correct model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $U \in \mathbb{U}$ and $V \in \mathbb{V}$.
- Neither U nor V are C or E
- U and V are both inessential
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-U}
- If $C=c$ caused $E=$ in $\mathbb{M} \mathbb{N}$, then $C=c$ caused $E=$ in $\mathbb{M} \mathbb{-} V$
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-U}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-1}

Model-Invariance

- Suppose that we have a correct model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $U \in \mathbb{U}$ and $V \in \mathbb{V}$.
- Neither U nor V are C or E
- U and V are both inessential
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-u}
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-V}
- If $C-c$ didn't cause $E=$ ein \mathbb{M}, then C - c didn't cause E in \mathbb{M}^{-L}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-V}

Model-Invariance

- Suppose that we have a correct model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $U \in \mathbb{U}$ and $V \in \mathbb{V}$.
- Neither U nor V are C or E
- U and V are both inessential
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-U}
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-1}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-U}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-V}

Model-Invariance

- Suppose that we have a correct model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $U \in \mathbb{U}$ and $V \in \mathbb{V}$.
- Neither U nor V are C or E
- U and V are both inessential
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-U}
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-V}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-U}
- If $C-c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-1}

Model-Invariance

- Suppose that we have a correct model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $U \in \mathbb{U}$ and $V \in \mathbb{V}$.
- Neither U nor V are C or E
- U and V are both inessential
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-U}
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-V}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-U}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-V}

Model-Invariance

- Suppose that we have a correct model $\mathbb{M}=(\mathbb{U}, \vec{u}, \mathbb{V}, \mathbb{E}, \mathscr{D})$, with $U \in \mathbb{U}$ and $V \in \mathbb{V}$.
- Neither U nor V are C or E
- U and V are both inessential
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-U}
- If $C=c$ caused $E=e$ in \mathbb{M}, then $C=c$ caused $E=e$ in \mathbb{M}^{-V}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-U}
- If $C=c$ didn't cause $E=e$ in \mathbb{M}, then $C=c$ didn't cause $E=e$ in \mathbb{M}^{-V}

Model Invariance

- Thus, this account is consistent with Model Invariance, Exogenous Reduction, and Endogenous Reduction.

Causation as Production and Dependence

- Prod does a reasonably good job at capturing a notion of causal production.
- Production involves uninterupted, local propogation of deviant, non-interial states of affairs (rather than default, inertial states of affairs)

Causation as Production and Dependence

- Prod does a reasonably good job at capturing a notion of causal production.
- Production involves uninterupted, local propogation of deviant, non-interial states of affairs (rather than default, inertial states of affairs)

Causation as Production and Dependence

Causation as Production and Dependence

In a causal model \mathbb{M}, C s taking on the value c, rather than c^{*}, caused E to take on the value e, rather than e^{*}, iff either (Prod) or (Dep).
(Prod) Both c and e are deviant variable values, the contrasts c^{*} and e^{*} defaults, and either:
i. In the local model at $E, \mathbb{M}((E))$, had C taken on the value c^{*}, E would have taken on the value e^{*},

$$
\mathbb{M}((E)) \mid=C=c^{*} \square \longrightarrow E=e^{*}
$$

or
ii. In \mathbb{M}, there is a transitive path leading from C to E.

Causation as Production and Dependence

Causation as Production and Dependence

In a causal model \mathbb{M}, C s taking on the value c, rather than c^{*}, caused E to take on the value e, rather than e^{*}, iff either (Prod) or (Dep).
(Dep) In \mathbb{M}, had C taken on the value c^{*}, E would have taken on the value e^{*},

$$
\mathbb{M} \models C=c^{*} \square \longrightarrow E=e^{*}
$$

Causation as Production and Dependence

- Hypothesis: the notion of causal production encapsulated in Prod represents the core of our concept of causation. The causal judgments licensed by the Prod clause alone are far more intuitive, natural, and widespread that those which are only licensed with the addition of the Dep clause.
- E.g., preemptive overdetermination, as opposed to
- prevention, omission, omissive prevention, and double
prevention.
> - However, if you accept the Prod clause, then the full strength of DEP is required in order for the account to be model-invariant.

Causation as Production and Dependence

- Hypothesis: the notion of causal production encapsulated in Prod represents the core of our concept of causation. The causal judgments licensed by the Prod clause alone are far more intuitive, natural, and widespread that those which are only licensed with the addition of the Dep clause.
- E.g., preemptive overdetermination, as opposed to
- prevention, omission, omissive prevention, and double
prevention.
- However, if you accept the Prod clause, then the full strength of DEP is required in order for the account to be model-invariant.

Causation as Production and Dependence

- Hypothesis: the notion of causal production encapsulated in Prod represents the core of our concept of causation. The causal judgments licensed by the Prod clause alone are far more intuitive, natural, and widespread that those which are only licensed with the addition of the Dep clause.
- E.g., preemptive overdetermination, as opposed to
- prevention, omission, omissive prevention, and double prevention.
- However, if you accept the Prod clause, then the full strength of DEP is required in order for the account to be model-invariant.

Causation as Production and Dependence

- Hypothesis: the notion of causal production encapsulated in Prod represents the core of our concept of causation. The causal judgments licensed by the Prod clause alone are far more intuitive, natural, and widespread that those which are only licensed with the addition of the Dep clause.
- E.g., preemptive overdetermination, as opposed to
- prevention, omission, omissive prevention, and double prevention.
- However, if you accept the Prod clause, then the full strength of DEP is required in order for the account to be model-invariant.

Double Prevention without Dependence

Figure 10: Double Prevention without Dependence

Double Prevention without Dependence

Figure 10: Double Prevention without Dependence

Double Prevention without Dependence

$$
\begin{aligned}
& \mathbb{U}:(A, C, F, G) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, H, E) \\
& \mathbb{E}:\left(\begin{array}{c}
E:=B+G>H \\
H:=D \\
D:=F \wedge \neg C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Double Prevention without Dependence

$$
\begin{aligned}
& \mathbb{U}:(A, C, F, G) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, H, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B+G>H \\
H \\
D:=D \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Double Prevention without Dependence

$$
\begin{aligned}
& \mathbb{U}:(A, C, G) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{r}) \\
& \mathbb{V}:(B, D, H, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B+G>H \\
H:=D \\
D:=\neg C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Double Prevention without Dependence

$$
\begin{aligned}
& \mathbb{U}:(A, C, G) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, H, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B+G>H \\
H:=D \\
D:=\neg C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Double Prevention without Dependence

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, H, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B>H \\
H \\
D:=D \\
B:=A C \\
\\
\end{array}\right)
\end{aligned}
$$

Double Prevention without Dependence

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, H, E) \\
& \mathbb{E}:\left(\begin{array}{l}
E:=B>H \\
H:=D \\
D:=\neg C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Double Prevention without Dependence

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, E) \\
& \mathbb{E}:\left(\begin{array}{c}
E:=B>D \\
D:=\neg C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Double Prevention without Dependence

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, D, E) \\
& \mathbb{E}:\left(\begin{array}{c}
E:=B>D \\
D:=\neg C \\
B:=A \wedge \neg C
\end{array}\right)
\end{aligned}
$$

Double Prevention without Dependence

$$
\begin{aligned}
& \mathbb{U}:(A, C) \\
& \vec{u}:(\mathrm{I}, \mathrm{I}) \\
& \mathbb{V}:(B, E) \\
& \mathbb{E}:\binom{E:=B \vee C}{B:=A \wedge \neg C}
\end{aligned}
$$

Double Prevention without Dependence

- If we wish our account to be model-invariant, and we wish to secure the intuitive verdict in Preemptive Overdetermination, then we must say that C s firing caused E s firing in figure io.

Double Prevention without Dependence

- So, we must have a transitive path running from C to E.

Double Prevention without Dependence

- So, we must make use of the full strength of the Dep clause.

Thank you!
Questions?

Extras

Switching

Switching

Switching

Switching

Counterexamples to Transitivity

'Shock Edward' is a game for three players. Carol and David each has a switch with two positions, Left and Right; to start, both are in the Left position. Carol has first turn: she can either move her switch to Right, or do nothing. David then has a turn: he can either move his switch to Right, or do nothing. The power is then turned on: if both switches are in the Left position, or both in the Right position, Edward gets an electric shock.

On this occasion the play goes as follows. Carol moves her switch to Right. David observes Carol's move; he wants Edward to get a shock, so he responds by moving his switch to Right also. Edward duly gets a shock. (McDermott, 1995)

Counterexamples to Transitivity

- A natural reading of Shock Edward:
- Carol is trying to prevent Edward from getting a shock.
- She is one of the good guys
- What she did is default.

Counterexamples to Transitivity

- A natural reading of Shock Edward:
- Carol is trying to prevent Edward from getting a shock.
- She is one of the good guys
- What she did is default.

Counterexamples to Transitivity

- A natural reading of Shock Edward:
- Carol is trying to prevent Edward from getting a shock.
- She is one of the good guys
- What she did is default.

Counterexamples to Transitivity

- A natural reading of Shock Edward:
- Carol is trying to prevent Edward from getting a shock.
- She is one of the good guys
- What she did is default.

Counterexamples to Transitivity

$\mathbb{U}:(C)$
$\vec{u}:(\mathrm{I})$
$\mathbb{V}:(D, E)$
$\mathbb{E}:\binom{E:=C=D}{D:=C}$
$\mathscr{D}: C=\mathrm{I}$ is default

Counterexamples to Transitivity

$\mathbb{U}:(C)$
$\vec{u}:(\mathrm{I})$
$\mathbb{V}:(D, E)$
$\mathbb{E}:\binom{E:=C=D}{D:=C}$
$\mathscr{D}: C=\mathrm{I}$ is default

Counterexamples to Transitivity

$\mathbb{U}:(C)$
$\vec{u}:(\mathrm{I})$
$\mathbb{V}:(D, E)$
$\mathbb{E}:\binom{E:=C=D}{D:=C}$
$\mathscr{D}: C=\mathrm{r}$ is deviant

Counterexamples to Transitivity

- If Carol's flipping the switch is deviant, then any model invariant theory of causation which gets the case of preemptive overdetermination correct will say that Carol's flipping the switch caused Edward to get a shock.

Counterexamples to Transitivity

$\mathbb{U}:(A, C)$
$\vec{u}:(\mathrm{I}, \mathrm{I})$
$\mathbb{V}:(B, D, E)$
$\mathbb{E}:\left(\begin{array}{l}E:=B \underline{\vee} D \\ D \\ B \\ B\end{array}=C=A \wedge \neg C\right)$
$\mathscr{D}: C=\mathrm{r}$ is deviant

Counterexamples to Transitivity

$\mathbb{U}:(A, C)$
$\vec{u}:(\mathrm{I}, \mathrm{I})$
$\mathbb{V}:(B, D, E)$
$\mathbb{E}:\left(\begin{array}{l}E:=B \underline{\vee} D \\ D \\ B \\ B\end{array}=C=A \wedge \neg C\right.$,
$\mathscr{D}: C=\mathrm{r}$ is deviant

Counterexamples to Transitivity

$\mathbb{U}:(C)$
$\vec{u}:(\mathrm{I})$
$\mathbb{V}:(B, D, E)$
$\mathbb{E}:\left(\begin{array}{rl}E & :=B \underline{\vee} D \\ D & :=C \\ B & :=\neg C\end{array}\right)$
$\mathscr{D}: C=\mathrm{I}$ is deviant

Counterexamples to Transitivity

$\mathbb{U}:(C)$
$\vec{u}:(\mathrm{I})$
$\mathbb{V}:(B, D, E)$
$\mathbb{E}:\left(\begin{array}{rl}E & :=B \underline{\vee} D \\ D & :=C \\ B & :=\neg C\end{array}\right)$
$\mathscr{D}: C=\mathrm{I}$ is deviant

Counterexamples to Transitivity

$\mathbb{U}:(C)$
$\vec{u}:(\mathrm{I})$
$\mathbb{V}:(B, D, E)$
$\mathbb{E}:\left(\begin{array}{l}E:=B \underline{\vee} D \\ D:=C \\ B:=\neg C\end{array}\right)$
$\mathscr{D}: C=\mathrm{I}$ is deviant

Counterexamples to Transitivity

$\mathbb{U}:(C)$
$\vec{u}:(\mathrm{I})$
$\mathbb{V}:(D, E)$

$\mathbb{E}:\binom{E:=\neg C \underline{\vee} D}{D:=C}$
$\mathscr{D}: C=\mathrm{r}$ is deviant

Counterexamples to Transitivity

$\mathbb{U}:(C)$
$\vec{u}:(\mathrm{I})$
$\mathbb{V}:(D, E)$

$\mathbb{E}:\binom{E:=C=D}{D:=C}$
$\mathscr{D}: C=\mathrm{r}$ is deviant

Counterexamples to Transitivity

- If you want
- to give a model-invariant theory of causation and - to say that Carol's flipping the switch didn't cause Edward to get a shock.
- then you'll have to say that one of the variable values in Shock Fduıard is default

Counterexamples to Transitivity

- If you want
- to give a model-invariant theory of causation and - to say that Carol's flipping the switch didn't cause Edward to get a shock,
- then you'll have to say that one of the variable values in Shock Edward is default.

Counterexamples to Transitivity

- If you want
- to give a model-invariant theory of causation and
- to say that Carol's flipping the switch didn't cause Edward to get a shock,
- then you'll have to say that one of the variable values in Shock Edward is default.

Counterexamples to Transitivity

- If you want
- to give a model-invariant theory of causation and
- to say that Carol's flipping the switch didn't cause Edward to get a shock,
- then you'll have to say that one of the variable values in Shock Edward is default.

