## Decision and Foreknowledge

J. Dmitri Gallow

April 1st, 2021
Dianoia Institute of Philosophy • jdmitrigallow.com

Please interrupt

## Philosophy and Decision Theory

- A lot of philosophical work on decision theory:


## Philosophy and Decision Theory

- A lot of philosophical work on decision theory:
- How to deliberate when your decision requires you to think of your deliberation as embedded in the world's causal order (and, therefore, as predictable)


## Philosophy and Decision Theory

- A lot of philosophical work on decision theory:
- How to deliberate when your decision requires you to think of your deliberation as embedded in the world's causal order (and, therefore, as predictable)
- My topic today:


## Philosophy and Decision Theory

- A lot of philosophical work on decision theory:
- How to deliberate when your decision requires you to think of your deliberation as embedded in the world's causal order (and, therefore, as predictable)
- My topic today:
- How to deliberate when your your decision requires you to think of the future as (metaphysically) settled


## Decision and Foreknowledge

Under the Christmas tree are two gifts: one for you, one for your sister. You know that one contains a toy, the other a lump of coal, but you don't know which is which. You absent-mindedly place decorative stickers on the gifts. Before you place the reindeer sticker, the oracle says: the gift on which you'll put the reindeer sticker contains the toy.

## Decision and Foreknowledge

Before a fair coin is flipped, you're offered a bet which pays out $\$ 150$ if the coin lands heads, and costs $\$ 50$. Before you decide whether to buy the bet, the oracle says: the coin will land on tails.

## Foreknowledge and CDT

- Many: these kinds of decisions pose a distinctive and novel threat to causal decision theory (CDT)


## Foreknowledge and CDT

- Many: these kinds of decisions pose a distinctive and novel threat to causal decision theory (CDT)
- Lewis: they are "much more problematic for decision theory than the Newcomb problems"


## Foreknowledge and CDT

- Many: these kinds of decisions pose a distinctive and novel threat to causal decision theory (CDT)
- Lewis: they are "much more problematic for decision theory than the Newcomb problems"
$\triangleright$ Price: they show that we must be subjectivists about causation


## Foreknowledge and CDT

- Many: these kinds of decisions pose a distinctive and novel threat to causal decision theory (CDT)
$\triangleright$ Lewis: they are "much more problematic for decision theory than the Newcomb problems"
$\triangleright$ Price: they show that we must be subjectivists about causation
$\triangleright$ Hitchcock and Stern: CDT must be modified to deal with these decisions


## Foreknowledge and CDT

- Many: these kinds of decisions pose a distinctive and novel threat to causal decision theory (CDT)
$\triangleright$ Lewis: they are "much more problematic for decision theory than the Newcomb problems"
$\triangleright$ Price: they show that we must be subjectivists about causation
- Hitchcock and Stern: CDT must be modified to deal with these decisions
$\triangleright$ Spencer: the problematic kind of foreknowledge is impossible (and a good thing, too, since CDT would be doomed were it possible)


## Foreknowledge and CDT

- My thesis: foreknowledge poses no new problems for CDT


## Foreknowledge and CDT

- My thesis: foreknowledge poses no new problems for CDT
- The supposed problem cases are either...


## Foreknowledge and CDT

- My thesis: foreknowledge poses no new problems for CDT
- The supposed problem cases are either...
- ...not problems,


## Foreknowledge and CDT

- My thesis: foreknowledge poses no new problems for CDT
$\triangleright$ The supposed problem cases are either...
- ...not problems,
$\triangleright$...problems for our theory of subjunctive supposition, not CDT, or


## Foreknowledge and CDT

- My thesis: foreknowledge poses no new problems for CDT
$\triangleright$ The supposed problem cases are either...
- ...not problems,
$\triangleright$...problems for our theory of subjunctive supposition, not CDT, or
$\triangleright$...not new problems for CDT [see the paper]


## Foreknowledge and CDT

- Nonetheless, these decisions teach and illustrate important lessons for causalists.


## Foreknowledge and CDT

- Nonetheless, these decisions teach and illustrate important lessons for causalists.
- Your intuitive judgements about instrumental value are not to be trusted when you have an 'illusion of control'


## Foreknowledge and CDT

- Nonetheless, these decisions teach and illustrate important lessons for causalists.
- Your intuitive judgements about instrumental value are not to be trusted when you have an 'illusion of control'
- Don't confuse the probability that an outcome would result, were you to choose $A$, with the chance of that outcome, conditional on your choosing $A$


## Foreknowledge and CDT

- Nonetheless, these decisions teach and illustrate important lessons for causalists.
- Your intuitive judgements about instrumental value are not to be trusted when you have an 'illusion of control'
$\triangleright$ Don't confuse the probability that an outcome would result, were you to choose $A$, with the chance of that outcome, conditional on your choosing $A$
$\triangleright$ [for more lessons, see the paper]


## Causal Decision Theory

## Decisions

- In a decision there are:


## Decisions

- In a decision there are:
$\triangleright$ Some available acts, $\mathcal{A}=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{M}\right\}$


## Decisions

- In a decision there are:
$\triangleright$ Some available acts, $\mathcal{A}=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{M}\right\}$
$\triangleright$ Some ways the world might be,
$\mathcal{W}=\left\{w_{1}, w_{2}, \ldots, w_{N}\right\}$


## Decisions

- In a decision there are:
$\triangleright$ Some available acts, $\mathcal{A}=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{M}\right\}$
$\triangleright$ Some ways the world might be,
$\mathcal{W}=\left\{w_{1}, w_{2}, \ldots, w_{N}\right\}$
- You have a credence distribution, $C$, over subsets of $\mathcal{W}$.


## Decisions

- In a decision there are:
$\triangleright$ Some available acts, $\mathcal{A}=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{M}\right\}$
$\triangleright$ Some ways the world might be,
$\mathcal{W}=\left\{w_{1}, w_{2}, \ldots, w_{N}\right\}$
- You have a credence distribution, $C$, over subsets of $\mathcal{W}$.
- For each $w \in \mathcal{W}$, there is a degree to which you desire $w, \mathcal{D}(w)$


## Causal Decision Theory

- When you face a decision, you should make your choice by considering how desirable things would be, were you to choose each $\mathrm{A} \in \mathcal{A}$


## Causal Decision Theory

- When you face a decision, you should make your choice by considering how desirable things would be, were you to choose each $\mathrm{A} \in \mathcal{A}$
- Let

$$
\text { would }_{A}(w)
$$

be a probability distribution.

## Causal Decision Theory

- When you face a decision, you should make your choice by considering how desirable things would be, were you to choose each $\mathrm{A} \in \mathcal{A}$
- Let

$$
\text { would }_{A}(w)
$$

be a probability distribution.
$\triangleright$ would $_{A}(w)\left(w^{*}\right)$ says how likely you think it is that $w^{*}$ would result, were you to choose A at $w$.

## Causal Decision Theory

- When you face a decision, you should make your choice by considering how desirable things would be, were you to choose each $\mathrm{A} \in \mathcal{A}$
- Let

$$
\text { would }_{A}(w)
$$

be a probability distribution.
$\triangleright$ would $_{A}(w)\left(w^{*}\right)$ says how likely you think it is that $w^{*}$ would result, were you to choose A at $w$.
$\triangleright$ would $_{A}(w)(A)=1$

## Causal Decision Theory

- When you face a decision, you should make your choice by considering how desirable things would be, were you to choose each $\mathrm{A} \in \mathcal{A}$
- Let

$$
\text { would }_{A}(w)
$$

be a probability distribution.
$\triangleright$ would $_{A}(w)\left(w^{*}\right)$ says how likely you think it is that $w^{*}$ would result, were you to choose A at $w$.
$\triangleright$ would $_{A}(w)(A)=1$

## Causal Decision Theory

$$
C=\left[C\left(w_{1}\right), C\left(w_{2}\right), \ldots, C\left(w_{N}\right)\right]
$$

## Causal Decision Theory

$$
\begin{aligned}
C & =\left[C\left(w_{1}\right), C\left(w_{2}\right), \ldots, C\left(w_{N}\right)\right] \\
\mathcal{D} & =\left[\mathcal{D}\left(w_{1}\right), \mathcal{D}\left(w_{2}\right), \ldots, \mathcal{D}\left(w_{N}\right)\right]^{\prime}
\end{aligned}
$$

## Causal Decision Theory

$$
\begin{aligned}
C= & {\left[C\left(w_{1}\right), C\left(w_{2}\right), \ldots, C\left(w_{N}\right)\right] } \\
\mathcal{D}= & {\left[\mathcal{D}\left(w_{1}\right), \mathcal{D}\left(w_{2}\right), \ldots, \mathcal{D}\left(w_{N}\right)\right]^{\prime} } \\
\text { would }_{A}= & \begin{array}{c}
w_{2} \\
\vdots \\
w_{N}
\end{array}\left[\begin{array}{cccc}
w_{1} & w_{2} & \ldots & w_{N} \\
0 & 1 / 4 & \ldots & 1 / 8 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 / 5 & 2 / 5 & \ldots & 1 / 100
\end{array}\right]
\end{aligned}
$$

## Causal Decision Theory

$$
\begin{aligned}
C & =\left[C\left(w_{1}\right), C\left(w_{2}\right), \ldots, C\left(w_{N}\right)\right] \\
\mathcal{D} & =\left[\mathcal{D}\left(w_{1}\right), \mathcal{D}\left(w_{2}\right), \ldots, \mathcal{D}\left(w_{N}\right)\right]^{\prime} \\
\text { would }_{A} & =\begin{array}{c}
w_{2} \\
\vdots \\
w_{N}
\end{array}\left[\begin{array}{cccc}
w_{1} & w_{2} & \ldots & w_{N} \\
0 & 1 / 4 & \ldots & 1 / 8 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 / 5 & 2 / 5 & \ldots & 1 / 100
\end{array}\right]
\end{aligned}
$$

## Causal Decision Theory

$$
\begin{aligned}
C= & {\left[C\left(w_{1}\right), C\left(w_{2}\right), \ldots, C\left(w_{N}\right)\right] } \\
\mathcal{D}= & {\left[\mathcal{D}\left(w_{1}\right), \mathcal{D}\left(w_{2}\right), \ldots, \mathcal{D}\left(w_{N}\right)\right]^{\prime} } \\
\text { would }_{A}= & \begin{array}{c}
w_{1} \\
w_{1} \\
w_{2}
\end{array}\left[\begin{array}{cccc}
w_{N} & \ldots & w_{N} \\
0 & 1 / 4 & \ldots & 1 / 8 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 / 5 & 2 / 5 & \ldots & 1 / 100
\end{array}\right]
\end{aligned}
$$

## Causal Decision Theory

$$
\begin{aligned}
C & =\left[C\left(w_{1}\right), C\left(w_{2}\right), \ldots, C\left(w_{N}\right)\right] \\
\mathcal{D} & =\left[\mathcal{D}\left(w_{1}\right), \mathcal{D}\left(w_{2}\right), \ldots, \mathcal{D}\left(w_{N}\right)\right]^{\prime} \\
\text { would }_{A}= & \stackrel{w_{2}}{w_{2}}\left[\begin{array}{cccc}
w_{1} & w_{2} & \ldots & w_{N} \\
& w_{N} & 1 / 4 & \ldots \\
1 / 8 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 / 5 & 2 / 5 & \ldots & 1 / 100
\end{array}\right]
\end{aligned}
$$

## Causal Decision Theory

$$
\begin{aligned}
C= & {\left[C\left(w_{1}\right), C\left(w_{2}\right), \ldots, C\left(w_{N}\right)\right] } \\
\mathcal{D}= & {\left[\mathcal{D}\left(w_{1}\right), \mathcal{D}\left(w_{2}\right), \ldots, \mathcal{D}\left(w_{N}\right)\right]^{\prime} } \\
\text { would }_{A}= & \begin{array}{c}
w_{2} \\
\vdots \\
w_{N}
\end{array}\left[\begin{array}{cccc}
w_{1} & w_{2} & \ldots & w_{N} \\
0 & 1 / 4 & \ldots & 1 / 8 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 / 5 & 2 / 5 & \ldots & 1 / 100
\end{array}\right]
\end{aligned}
$$

## Causal Decision Theory

$$
\begin{aligned}
C & =\left[C\left(w_{1}\right), C\left(w_{2}\right), \ldots, C\left(w_{N}\right)\right] \\
\mathcal{D} & =\left[\mathcal{D}\left(w_{1}\right), \mathcal{D}\left(w_{2}\right), \ldots, \mathcal{D}\left(w_{N}\right)\right]^{\prime} \\
\text { would }_{A} & =\begin{array}{c}
w_{2} \\
\\
\\
w_{N}
\end{array}\left[\begin{array}{cccc}
w_{1} & w_{2} & \ldots & w_{N} \\
0 & 1 / 4 & \ldots & 1 / 8 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 / 5 & 2 / 5 & \ldots & 1 / 100
\end{array}\right]
\end{aligned}
$$

## Causal Decision Theory

$$
\begin{aligned}
C & =\left[C\left(w_{1}\right), C\left(w_{2}\right), \ldots, C\left(w_{N}\right)\right] \\
\mathcal{D} & =\left[\mathcal{D}\left(w_{1}\right), \mathcal{D}\left(w_{2}\right), \ldots, \mathcal{D}\left(w_{N}\right)\right]^{\prime} \\
\text { would }_{A} & =\text { would }_{A}(\text { row })(\text { column })
\end{aligned}
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} \sum_{w \in \mathcal{W}} \sum_{w^{*} \in \mathcal{W}} C(w) \cdot \text { would }_{A}(w)\left(w^{*}\right) \cdot \mathcal{D}\left(w^{*}\right)
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} \sum_{w \in \mathcal{W}} \sum_{w^{*} \in \mathcal{W}} C(w) \cdot \text { would }_{A}(w)\left(w^{*}\right) \cdot \mathcal{D}\left(w^{*}\right)
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} C \cdot \text { would }_{A} \cdot \mathcal{D}
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} C \cdot \text { would }_{A} \cdot \mathcal{D}
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} C \cdot \text { would }_{A} \cdot \mathcal{D}
$$

$\triangleright$ EDT: choose an option which maximises $\mathcal{V}$ !

$$
\mathcal{V}(A) \stackrel{\text { def }}{=} C \mid A \cdot \mathcal{D}
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} C \cdot \text { would }_{A} \cdot \mathcal{D}
$$

$\triangleright$ EDT: choose an option which maximises $\mathcal{V}$ !

$$
\mathcal{V}(A) \stackrel{\text { def }}{=} C \mid A \cdot \mathcal{D}
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=}\left(C \cdot \text { would }_{A}\right) \cdot \mathcal{D}
$$

$\triangleright$ EDT: choose an option which maximises $\mathcal{V}$ !

$$
\mathcal{V}(A) \stackrel{\text { def }}{=} C \mid A \cdot \mathcal{D}
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} C_{A} \cdot \mathcal{D}
$$

$\triangleright$ EDT: choose an option which maximises $\mathcal{V}$ !

$$
\mathcal{V}(A) \stackrel{\text { def }}{=} C \mid A \cdot \mathcal{D}
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} C \cdot \text { would }_{A} \cdot \mathcal{D}
$$

$\triangleright$ EDT: choose an option which maximises $\mathcal{V}$ !

$$
\mathcal{V}(A) \stackrel{\text { def }}{=} C \mid A \cdot \mathcal{D}
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} C \cdot\left(\text { would }_{A} \cdot \mathcal{D}\right)
$$

$\triangleright$ EDT: choose an option which maximises $\mathcal{V}$ !

$$
\mathcal{V}(A) \stackrel{\text { def }}{=} C \mid A \cdot \mathcal{D}
$$

## Causal Decision Theory

$\triangleright$ CDT: choose an option which maximises $\mathcal{U}$ !

$$
\mathcal{U}(A) \stackrel{\text { def }}{=} C \cdot \mathcal{D}_{A}
$$

$\triangleright$ EDT: choose an option which maximises $\mathcal{V}$ !

$$
\mathcal{V}(A) \stackrel{\text { def }}{=} C \mid A \cdot \mathcal{D}
$$

## Instrumental Value vs. News Value

NO DIFFERENCE
Before you are two boxes. You may either take the box on the left, 'Lefty', or the box on the right, 'Righty'. There is no difference between them. If it was predicted that you'd take Lefty, then there's $\$ 100$ in both boxes. If it was predicted that you'd take Righty, then there's nothing in either box. (The predictions are very reliable.)

## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 100$ | $\$ 0$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 100$ | $\$ 0$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 100$ | $\$ 0$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

- Your rational credence that there's money in the boxes is under your control


## Instrumental Value vs. News Value

- Your rational credence that there's money in the boxes is under your control
- This can make it feel like you have control over whether there's money in the boxes.


## Instrumental Value vs. News Value

- Your rational credence that there's money in the boxes is under your control
- This can make it feel like you have control over whether there's money in the boxes.
- But this is an illusion-in fact, you have no control over whether there's money in the boxes.


## Instrumental Value vs. News Value

- There is a strong intuition that you should take Lefty.


## Instrumental Value vs. News Value

- There is a strong intuition that you should take Lefty.
- Causalists should not deny this-instead, they should diagnose this intuition as a consequence of the illusion of control


## Instrumental Value vs. News Value

- To correct for the illusion of control, we may consider the decision from a better-informed, third-personal perspective.


## Instrumental Value vs. News Value

- To correct for the illusion of control, we may consider the decision from a better-informed, third-personal perspective.
- Suppose your friend is choosing, and you can see inside the boxes


## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 100$ | $\$ 0$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 100$ | $\$ 0$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 100$ | $\$ 0$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

- new decision: in order to take Lefty, your friend must pay $\$ 90$.


## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 10$ | $-\$ 90$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 10$ | $-\$ 90$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 10$ | $-\$ 90$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 10$ | $-\$ 90$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Instrumental Value vs. News Value

|  | Predicted Lefty | Predicted Righty |
| ---: | :---: | :---: |
| Take Lefty | $\$ 10$ | $-\$ 90$ |
| Take Righty | $\$ 100$ | $\$ 0$ |

## Lesson \#1

When you have control over your rational credence that $\phi$, but you know for sure that you do not have control over whether $\phi$, your intuitive judgements about instrumental value can lead you astray by conflating control over your epistemic state with control over the world.

In these cases, you should consider what instrumental value a choice has when viewed from a better informed, third-personal perspective.

## Lesson \#1

It is irrational to "counsel [a] policy of managing the news so as to get good news about matters which you have no control over" (Lewis, 1981, p. 5)

Managing News From the Future

## Sticker

## STICKER

Under the Christmas tree are two gifts: one for you, one for your sister. You know that one contains a toy, the other a lump of coal, but you don't know which is which. You absent-mindedly place decorative stickers on the gifts. Before you place the reindeer sticker, the oracle says: the gift on which you'll put the reindeer sticker contains the toy.

## Sticker



## Sticker

|  | You gifted toy | Sister gifted toy |
| :---: | :---: | :---: |
| Sticker on yours | - | - |
| Sticker on sister's | - | - |

## Sticker

|  | You gifted toy | Sister gifted toy |
| ---: | :---: | :---: |
| Sticker on yours | $(2)$ | 2 |
| Sticker on sister's | $;$ | $(2)$ |

## Sticker

|  | You gifted toy | Sister gifted toy |
| ---: | :---: | :---: |
| Sticker on yours | $(\cdot)$ | $(2$ |
| Sticker on sister's | $:)$ | $:()$ |

## Hitchcock's revision of CDT

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{o}$ be your prior credences.

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{o}$ be your prior credences.

$$
\mathcal{U}(A)=C \cdot \text { would }_{A} \cdot \mathcal{D}
$$

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{o}$ be your prior credences.

$$
\mathcal{U}(A)=C \cdot \text { would }_{A} \cdot \mathcal{D}
$$

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{o}$ be your prior credences.

$$
\mathcal{U}(A)=C_{0} \mid E F \cdot \text { would }_{A} \cdot \mathcal{D}
$$

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{o}$ be your prior credences.

$$
\mathcal{U}(A)=C_{o} \mid E F \cdot \text { would }_{A} \cdot \mathcal{D}
$$

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{0}$ be your prior credences.

$$
\mathcal{U}(A)=C_{\mathrm{o}} \mid E F \cdot \text { would }_{A} \cdot \mathcal{D}
$$

$$
\mathcal{H}(A)=\left(C_{0} \mid E \cdot \text { would }_{A}\right) \mid F \cdot \mathcal{D}
$$

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{0}$ be your prior credences.

$$
\mathcal{U}(A)=C_{\mathrm{o}} \mid E F \cdot \text { would }_{A} \cdot \mathcal{D}
$$

$$
\mathcal{H}(A)=\left(C_{0} \mid E \cdot \text { would }_{A}\right) \mid F \cdot \mathcal{D}
$$

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{o}$ be your prior credences.

$$
\mathcal{U}(A)=C_{\mathrm{o}} \mid E F \cdot \text { would }_{A} \cdot \mathcal{D}
$$

$$
\mathcal{H}(A)=\left(C_{0} \mid E \cdot \text { would }_{A}\right) \mid F \cdot \mathcal{D}
$$

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{o}$ be your prior credences.

$$
\mathcal{U}(A)=C_{\mathrm{o}} \mid E F \cdot \text { would }_{A} \cdot \mathcal{D}
$$

$$
\mathcal{H}(A)=\left(C_{0} \mid E \cdot \text { would }_{A}\right) \mid F \cdot \mathcal{D}
$$

## Hitchcock's revision of CDT

Let $E$ be your ordinary evidence, and let $F$ be your foreknowledge. And let $C_{o}$ be your prior credences.

$$
\mathcal{U}(A)=C_{\mathrm{o}} \mid E F \cdot \text { would }_{A} \cdot \mathcal{D}
$$

$$
\mathcal{H}(A)=\left(C_{0} \mid E \cdot \text { would }_{A}\right) \mid F \cdot \mathcal{D}
$$

## Sticker

|  | You gifted toy | Sister gifted toy |
| :---: | :---: | :---: |
| Sticker on yours | $(2)$ | $(2$ |
| Sticker on sister's | () | $(2)$ |

## Sticker

|  | You gifted toy | Sister gifted toy |
| :---: | :---: | :---: |
| Sticker on yours | $(2)$ | $(2$ |
| Sticker on sister's | $;)$ | $(2)$ |

## Sticker

|  | You gifted toy | Sister gifted toy |
| ---: | :---: | :---: |
| Sticker on yours | $;$ | $(2$ |
| Sticker on sister's | $;$ | $(2)$ |

- $\mathcal{H}($ sticker on yours $)=$ )
- $\mathcal{H}($ sticker on sister's $)=\varnothing$


## Lesson \#1

When you have control over your rational credence that $\phi$, but you know for sure that you do not have control over whether $\phi$, your intuitive judgements about rational choice can lead you astray by conflating control over your epistemic state with control over the world.

In these cases, you should consider what instrumental value a choice has when viewed from a better informed, third-personal perspective.

## Instrumental Value vs. News Value

- To correct for the illusion of control, we may consider the decision from a better-informed, third-personal perspective.


## Instrumental Value vs. News Value

- To correct for the illusion of control, we may consider the decision from a better-informed, third-personal perspective.
$\triangleright$ Suppose your sister is choosing, and you know what's inside the gifts (your sister wants you to get the toy)


## Instrumental Value vs. News Value

- To correct for the illusion of control, we may consider the decision from a better-informed, third-personal perspective.
- Suppose your sister is choosing, and you know what's inside the gifts (your sister wants you to get the toy)


## Sticker

|  | You gifted toy | Sister gifted toy |
| :---: | :---: | :---: |
| Sticker on yours | - | - |
| Sticker on sister's | - | © |

## Sticker

|  | You gifted toy | Sister gifted toy |
| ---: | :---: | :---: |
| Sticker on yours | $(2)$ | 2 |
| Sticker on sister's | $;$ | $(2)$ |

## Sticker

|  | You gifted toy | Sister gifted toy |
| ---: | :---: | :---: |
| Sticker on yours | $(\cdot)$ | $(2$ |
| Sticker on sister's | $:)$ | $:()$ |

## Instrumental Value vs. News Value

- New decision: your sister has to pay in order to put the sticker on your gift


## Sticker

|  | You get toy | Sister gets toy |
| ---: | :---: | :---: |
| Sticker on yours | $\cdot$ | $(:)$ |
| Sticker on sister's | $:)$ | $(:)$ |

## Sticker

|  | You get toy | Sister gets toy |
| :---: | :---: | :---: |
| Sticker on yours | $\bigcirc$ | (3) |
| Sticker on sister's | - | - |

## Sticker

|  | You get toy | Sister gets toy |
| ---: | :---: | :---: |
| Sticker on yours | $\cdot$ | $(:)$ |
| Sticker on sister's | $:)$ | $(:)$ |

- $\mathcal{H}($ sticker on yours $)=:$
- $\mathcal{H}($ sticker on sister's $)=\otimes^{2}$


## Sticker



- $\mathcal{H}($ sticker on yours $)=:$
- $\mathcal{H}($ sticker on sister's $)=\varnothing$


## Sticker

|  | You get toy | Sister gets toy |
| ---: | :---: | :---: |
| Sticker on yours | $:$ |  |
| Sticker on sister's | $:-)$ | $(:)$ |

- $\mathcal{H}($ sticker on yours $)=:$
- $\mathcal{H}($ sticker on sister's $)=\varnothing$


## In Sum

- Causalists should be happy to say that you have no instrumental reason to place the sticker on your gift


## In Sum

- Causalists should be happy to say that you have no instrumental reason to place the sticker on your gift
$\triangleright$ There is a strong inclination to place the sticker on your own gift, but this should be diagnosed as the result of an agential illusion of control

Foreknowledge and Chance

## Inadmissible Foreknowledge

- Foreknowledge is inadmissible if, when you have that information, you know for sure that the chance of $\phi$ is $x$, but your credence in $\phi$ should not be $x$.


## Inadmissible Foreknowledge

- Foreknowledge is inadmissible if, when you have that information, you know for sure that the chance of $\phi$ is $x$, but your credence in $\phi$ should not be $x$.
- Hall, Meacham, and Spencer: this is impossible.


## Inadmissible Foreknowledge

- Foreknowledge is inadmissible if, when you have that information, you know for sure that the chance of $\phi$ is $x$, but your credence in $\phi$ should not be $x$.
- Hall, Meacham, and Spencer: this is impossible.
$\triangleright$ One of Spencer's reasons: inadmissible foreknowledge would make trouble for CDT


## Inadmissible Foreknowledge

Inadmissible Foreknowledge
Before a fair coin is flipped, you're offered a bet
which pays out $\$ 150$ if the coin lands heads, and costs
\$50. Before you decide whether to buy the bet, the
oracle says: the coin will land on tails.

## Inadmissible Foreknowledge

Inadmissible Foreknowledge
Before a fair coin is flipped, you're offered a bet
which pays out $\$ 150$ if the coin lands heads, and costs
\$50. Before you decide whether to buy the bet, the
oracle says: the coin will land on tails.
$\triangleright$ A natural thought: you know for sure that the chance of heads is $50 \%$, but you should be less than $50 \%$ confident in heads

## Inadmissible Foreknowledge

Inadmissible Foreknowledge
Before a fair coin is flipped, you're offered a bet
which pays out $\$ 150$ if the coin lands heads, and costs
$\$ 50$. Before you decide whether to buy the bet, the
oracle says: the coin will land on tails.

- Spencer: because it's rational for you to be less than $50 \%$ confident in heads, you should expect the chance of heads to be less than $50 \%$


## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

- Spencer: it's irrational to buy the bet


## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

- Spencer: it's irrational to buy the bet


## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

$\triangleright$ Spencer: it's irrational to buy the bet
$\triangleright$ I agree

## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

$\triangleright$ Spencer: if the chance of heads is $50 \%$, then CDT says to buy the bet

## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

$\triangleright$ Spencer: if the chance of heads is $50 \%$, then CDT says to buy the bet

- I disagree


## Inadmissible Foreknowledge

- Four possibilities:


## Inadmissible Foreknowledge

- Four possibilities:
$\triangleright w_{H B}$ : coin lands heads and you bet


## Inadmissible Foreknowledge

- Four possibilities:
$\triangleright w_{H B}$ : coin lands heads and you bet
$\triangleright w_{H N}$ : coin lands heads and you do $n$ ot bet


## Inadmissible Foreknowledge

- Four possibilities:
$\triangleright w_{H B}$ : coin lands heads and you bet
$\triangleright w_{H N}$ : coin lands heads and you do $n$ ot bet
$\triangleright w_{T B}$ : coin lands tails and you bet


## Inadmissible Foreknowledge

- Four possibilities:
$\triangleright w_{H B}$ : coin lands heads and you bet
$\triangleright w_{H N}$ : coin lands heads and you do $n$ ot bet
$\triangleright w_{T B}$ : coin lands tails and you bet
$\triangleright w_{T N}$ : coin lands tails and you do not bet


## Inadmissible Foreknowledge

- Your credences:


## Inadmissible Foreknowledge

- Your credences:
$\triangleright C\left(w_{H B}\right)=0$
$\triangleright C\left(w_{H N}\right)=0$
$\triangleright C\left(w_{T B}\right)=C(B)$
$\triangleright C\left(w_{T N}\right)=C(N)$


## Inadmissible Foreknowledge

- Your desires:


## Inadmissible Foreknowledge

- Your desires:
$\triangleright \mathcal{D}\left(w_{H B}\right)=100$
$\triangleright \mathcal{D}\left(w_{H N}\right)=0$
$\triangleright \mathcal{D}\left(w_{T B}\right)=-50$
$\triangleright \mathcal{D}\left(w_{T N}\right)=0$


## Inadmissible Foreknowledge

- Spencer assumes would $_{B}$ is:

$$
\begin{gathered}
w_{H B} \\
w_{H N} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

## Inadmissible Foreknowledge

- Spencer assumes would ${ }_{B}$ is:

$$
\begin{gathered}
w_{H B} \\
w_{H N} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

$\triangleright$ I.e., for any $w$, would $_{B}(w)(-)=C h_{w}(-\mid B)$.

## Inadmissible Foreknowledge

- Spencer assumes would ${ }_{B}$ is:

$$
\begin{gathered}
w_{H B} \\
w_{H N} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

$\triangleright$ I.e., for any $w$, would $_{B}(w)(-)=C h_{w}(-\mid B)$.

## Inadmissible Foreknowledge

- Spencer assumes would $_{N}$ is:

$$
\begin{gathered}
w_{H B} \\
w_{H N} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 1 / 2 & 0 & 1 / 2
\end{array}\right]
$$

$\triangleright$ I.e., for any $w$, would $_{B}(w)(-)=C h_{w}(-\mid B)$.

## Inadmissible Foreknowledge

- Then,

$$
\mathcal{U}(B)=25
$$

and

$$
\mathcal{U}(N)=\mathrm{o}
$$

## Inadmissible Foreknowledge

- Then,

$$
\mathcal{U}(B)=25
$$

and

$$
\mathcal{U}(N)=\mathrm{o}
$$

$\triangleright$ So CDT says to buy the bet

## Inadmissible Foreknowledge

- The key assumption:

$$
\operatorname{would}_{A}(w)(-)=C h_{w}(-\mid A)
$$

## Inadmissible Foreknowledge

- The key assumption:

$$
\text { would }_{A}(w)(-)=C h_{w}(-\mid A)
$$

$\triangleright$ The assumption comes from Lewis (1980, 1981)

## Strong Centering

$\triangleright$ Rabinowicz: this conflicts with Strong Centering

## Strong Centering

$\triangleright$ Rabinowicz: this conflicts with Strong Centering

Strong Centering
If $w$ is a world at which you choose A , then were you to choose A at $w, w$ is the world which would result.
if $A$ is true at $w$, then would $_{A}(w)(w)=100 \%$

## Strong Centering

- Both Lewis and Stalnaker's semantics for counterfactuals vindicate the analogue of Strong Centering.


## Strong Centering

- Both Lewis and Stalnaker's semantics for counterfactuals vindicate the analogue of Strong Centering.
$\triangleright A \wedge C \vdash A \square \longrightarrow C$


## Strong Centering

- Both Lewis and Stalnaker's semantics for counterfactuals vindicate the analogue of Strong Centering.
$\triangleright A \wedge C \vdash A \square \longrightarrow C$
- But Lewis rejects Strong Centering in decision theory


## Strong Centering

- Both Lewis and Stalnaker's semantics for counterfactuals vindicate the analogue of Strong Centering.
$\triangleright A \wedge w \vdash A \square \longrightarrow w$
- But Lewis rejects Strong Centering in decision theory


## Strong Centering

- Both Lewis and Stalnaker's semantics for counterfactuals vindicate the analogue of Strong Centering.
$\triangleright A \wedge w \vdash A \square \longrightarrow$
$\triangleright$ Bridge principle:

$$
w \models A \square \longrightarrow C \Leftrightarrow \text { would }_{A}(w)(C)=100 \%
$$

- But Lewis rejects Strong Centering in decision theory


## Strong Centering

$\triangleright$ I accept Strong Centering, but it won't help with this problem.

## Strong Centering

$\triangleright$ I accept Strong Centering, but it won't help with this problem.

- If we just impose Strong Centering, then, if you're confident that you'll not buy the bet, CDT says that you should buy it.


## Strong Centering

$$
\text { would }_{B}=\begin{gathered}
w_{H B} \\
w_{T B} \\
w_{T N} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

## Strong Centering

$$
\text { would }_{B}=\begin{gathered}
w_{H B} \\
w_{H N} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

## Strong Centering

$$
\text { would }_{B}=\begin{gathered}
w_{H B} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

## Strong Centering

$$
\text { would }_{B}=\begin{gathered}
w_{H B} \\
w_{H N} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

## Strong Centering

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

## Strong Centering

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

## Strong Centering

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

## Strong Centering

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

## Strong Centering

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

## Strong Centering

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

$\triangleright$ CDT: if you think you won't bet, then you should

## Strong Centering

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Don't buy the bet | $\$ 0$ | $\$ 0$ |

$\Delta$ CDT: if you think you won't bet, then you should
$\triangleright$ But this is still bad advice. The oracle's prophesy tells you that there's negative instrumental value in betting. So you shouldn't bet.

The 'Morgenbesser Conditional'

## The 'Morgenbesser Conditional'

- Suppose I offer you a bet on whether a flipped coin lands heads. You refuse the bet, and the coin lands heads.


## The 'Morgenbesser Conditional'

- Suppose I offer you a bet on whether a flipped coin lands heads. You refuse the bet, and the coin lands heads.
(MC) "If you had taken the bet, you would have won"


## The 'Morgenbesser Conditional'

- Suppose I offer you a bet on whether a flipped coin lands heads. You refuse the bet, and the coin lands heads.
(MC) "If you had taken the bet, you would have won"
- A general lesson: when we make subjunctive suppositions, we hold fixed things which are causally independent of the supposition-even if those things were a matter of chance at the time of the supposition.


## Causal Independence

Causal Independence
If whether $\phi$ is causally independent of your choice, then $\phi$ would not change its truth-value, were you to choose any $\mathrm{A} \in \mathcal{A}$.

$$
\text { would }_{A}(w)(\phi)= \begin{cases}1 & \text { if } \phi \text { is true at } w \\ 0 & \text { if } \phi \text { is false at } w\end{cases}
$$

## Causal Independence

## Causal Independence implies that would $_{B}$ is:

$$
\begin{gathered}
w_{H B} \\
w_{H N} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

## Causal Independence

## Causal Independence implies that would $_{B}$ is:

$$
\begin{gathered}
w_{H B} \\
w_{H N} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

## Causal Independence

## Causal Independence implies that would $_{B}$ is:

$w_{H B}$
$w_{H N}$
$w_{T B}$
$w_{T N}$$\left[\begin{array}{cccc}w_{H B} & w_{H N} & w_{T B} & w_{T N} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]$

## Causal Independence

## Causal Independence implies that would $_{B}$ is:

$$
\begin{gathered}
w_{H B} \\
w_{H N} \\
w_{T B} \\
w_{T N}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H N} & w_{T B} & w_{T N} \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$\triangleright$ Then, $\mathcal{U}(B)=-50$, and $\mathcal{U}(N)=0$

## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Not buy the bet | $\$ 0$ | $\$ 0$ |

## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Not buy the bet | $\$ 0$ | $\$ 0$ |

- If you were to buy the bet, this wouldn't make any difference to how the coin lands


## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Not buy the bet | $\$ 0$ | $\$ 0$ |

$\triangleright$ If you were to buy the bet, this wouldn't make any difference to how the coin lands
$\triangleright$ You know the coin lands tails

## Inadmissible Foreknowledge

|  | Heads | Tails |
| ---: | :---: | :---: |
| Buy the bet | $\$ 100$ | $-\$ 50$ |
| Not buy the bet | $\$ 0$ | $\$ 0$ |

$\triangleright$ If you were to buy the bet, this wouldn't make any difference to how the coin lands
$\triangleright$ You know the coin lands tails

- So you shouldn't buy the bet


## Lesson \#2

The probability that $\phi$ would result, were you to choose $A$, is not always just the chance of $\phi$, conditional on your choosing A.

If you choose A and $\phi$ is true, then $\phi$ would be true, were you to choose A

And if $\phi$ is causally independent of your choice, then $\phi$ wouldn't change its truth-value, were you to choose A.

In Summation

## In Summation

- Foreknowledge poses no new problems for CDT


## In Summation

- Foreknowledge poses no new problems for CDT
- Decisions like sticker are not problems for CDT, because causalists should think CDT gives the correct advice in those cases


## In Summation

- Foreknowledge poses no new problems for CDT
- Decisions like sticker are not problems for CDT, because causalists should think CDT gives the correct advice in those cases
$\triangleright$ Decisions like inadmissible foreknowledge are problems, but they are problems for our theories of subjunctive supposition, not for CDT


## In Summation

- These kinds of decisions teach us-or vividly illustrate for us-two important lessons about the instrumental value of our choices


## In Summation

- These kinds of decisions teach us-or vividly illustrate for us-two important lessons about the instrumental value of our choices
- Lesson \#1: when you have control over what to believe about whether $\phi$, but no control over whether $\phi$, your intuitions about instrumental value can be distorted by an agential illusion of control


## In Summation

- These kinds of decisions teach us-or vividly illustrate for us-two important lessons about the instrumental value of our choices
- Lesson \#2: the probability of an outcome would result, were you to choose $A$, is not always the chance of that outcome, conditional on $A$.

Fin

Extras

## Extras

Choosing the Chances

## Choosing the Chances

## CHOOSING THE CHANCES

There are two coins in front of you: a black one and a white one. You must choose which coin to flip. The black coin has a $2 / 3$ rds bias towards heads, and the white coin has a $2 / 3$ rds bias towards tails. If you flip the black coin, then you are betting on the outcome of the flip. If the black coin lands heads, then you will get \$90; whereas, if the black coin lands tails, you will lose \$90. Before you make your choice, the oracle informs you that the coin you flip will land on tails.

## Choosing the Chances

$$
\text { would }_{B}=\begin{gathered}
w_{H B} \\
w_{H W} \\
w_{T B} \\
w_{T W}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H W} & w_{T B} & w_{T W} \\
1 & 0 & 0 & 0 \\
2 / 3 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 & 0 \\
2 / 3 & 0 & 1 / 3 & 0
\end{array}\right]
$$

## Choosing the Chances

$$
\text { would }_{W}=\begin{gathered}
w_{H W} \\
w_{T B} \\
w_{T W}
\end{gathered}\left[\begin{array}{cccc}
w_{H B} & w_{H W} & w_{T B} & w_{T W} \\
0 & 1 / 3 & 0 & 2 / 3 \\
0 & 1 & 0 & 0 \\
0 & 1 / 3 & 0 & 2 / 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## Choosing the Chances

|  | Heads | Tails |
| :---: | :---: | :---: |
| Flip Black | $\$ 90$ | $-\$ 90$ |
| Flip White | $\$ 0$ | $\$ 0$ |

## Choosing the Chances

|  | Heads | Tails |
| :---: | :---: | :---: |
| Flip Black | $\$ 90$ | $-\$ 90$ |
| Flip White | $\$ 0$ | $\$ 0$ |

## Choosing the Chances

|  | Heads | Tails |
| :---: | :---: | :---: |
| Flip Black | $\$ 90$ | $-\$ 90$ |
| Flip White | $\$ 0$ | $\$ 0$ |

## Choosing the Chances

|  | Heads | Tails |
| :---: | :---: | :---: |
| Flip Black | $\$ 90$ | $-\$ 90$ |
| Flip White | $\$ 0$ | $\$ 0$ |

## Choosing the Chances

|  | Heads | Tails |
| :---: | :---: | :---: |
| Flip Black | $\$ 90$ | $-\$ 90$ |
| Flip White | $\$ 0$ | $\$ 0$ |

- Given you flip black, $\mathcal{U}($ black $)=-90$


## Choosing the Chances

|  | Heads | Tails |
| :---: | :---: | :---: |
| Flip Black | $\$ 90$ | $-\$ 90$ |
| Flip White | $\$ 0$ | $\$ 0$ |

- Given you flip black, $\mathcal{U}($ black $)=-90$


## Choosing the Chances

|  | Heads | Tails |
| :---: | :---: | :---: |
| Flip Black | $\$ 90$ | $-\$ 90$ |
| Flip White | $\$ 0$ | $\$ 0$ |

- Given you flip black, $\mathcal{U}($ black $)=-90$


## Choosing the Chances

|  | Heads | Tails |
| :---: | :---: | :---: |
| Flip Black | $\$ 90$ | $-\$ 90$ |
| Flip White | $\$ 0$ | $\$ 0$ |

- Given you flip black, $\mathcal{U}($ black $)=-90$
- Given you flip white, $\mathcal{U}$ (black) $=30$


## Lesson \#3

When you have no control over your rational credence that $\phi$, but you know for sure that you do have control over whether $\phi$, your intuitive judgements about instrumental value can be led astray by conflating a lack of control over your epistemic state with a lack of control over the world.

In these cases, you should consider what instrumental value a choice has when viewed from a better informed, third-personal perspective.

## Extras

Foreknown Irrationality

## Foreknown Rationality

You may either choose a guaranteed $\$ 1$ or a guaranteed $\$ 100$. The oracle prophesies that you will take the $\$ 100$.

- What should you do?


## Foreknown Rationality

You may either choose a guaranteed $\$ 1$ or a guaranteed $\$ 100$. The oracle prophesies that you will take the $\$ 100$.

- What should you do?
- Take the $\$ 100$, clearly


## Foreknown Irrationality

You may either choose a guaranteed $\$ 1$ or a guaranteed $\$ 100$. The oracle prophesies that you will take the $\$ 1$.

- What should you do?


## Foreknown Irrationality

You may either choose a guaranteed $\$ 1$ or a guaranteed $\$ 100$. The oracle prophesies that you will take the $\$ 1$.

- What should you do?
- Still, take the \$100


## Foreknown Irrationality

- When you take the $\$ 100$, you will give yourself evidence that the oracle's prophesy is not accurate.


## Foreknown Irrationality

- When you take the $\$ 100$, you will give yourself evidence that the oracle's prophesy is not accurate.
- So: when choosing rationally, you should not take your foreknowledge for granted.


## Lesson \#4

In decisions made with foreknowledge, your own rational deliberation can provide you with evidence that the oracle's prophesy is false, misleading, or misremembered. So you shouldn't always take your foreknowledge for granted when deliberating about what to do.

