Two-Dimensional De Se Chance Deference

J. Dmitri Gallow

Dianoia Institute of Philosophy • jdmitrigallow.com
University of Helsinki, December 15th, 2020

Please interrupt

Chance Deference

- Principle of chance deference:

Chance Deference

- Principle of chance deference:

Given that the objective chance of p is $n \%$, you should be $n \%$ sure that p

Chance Deference

- Principle of chance deference:

Given that the objective chance of p is $n \%$, you should be $n \%$ sure that p

- Two problem cases:

Chance Deference

- Principle of chance deference:

Given that the objective chance of p is $n \%$, you should be $n \%$ sure that p

- Two problem cases:
- a priori knowable contingencies

Chance Deference

- Principle of chance deference:

Given that the objective chance of p is $n \%$, you should be $n \%$ sure that p

- Two problem cases:
\triangleright a priori knowable contingencies
\triangleright de se uncertainty

Two-Dimensional De Se Expert Deference

- I will propose a principle of chance deference which handles these problem cases

Two-Dimensional De Se Expert Deference

- I will propose a principle of chance deference which handles these problem cases
- In a slogan: defer to chance about whether p.

Two-Dimensional De Se Expert Deference

- I will propose a principle of chance deference which handles these problem cases
- In a slogan: defer to chance about whether p.

Two-Dimensional De Se Expert Deference

- I will propose a principle of chance deference which handles these problem cases
- In a slogan: defer to chance about whether your thought ' p ' is true, given the location at which you are entertaining it.

Outline

$\$ 1$ Lewis's Principle of Chance Deference
\$2. A Two-Dimensional, De Se Principle of Chance Deference
\$3. Sleeping Beauty
\$4. In Summation

\$1. Lewis's Principle of Chance Deference

Lewis's Principle of Chance Deference

- For any thought p, any number $n \%$, and any time t,
(LCD) $\quad C\left(p \mid \mathcal{C} h_{t}(p)=n \%\right) \stackrel{!}{=} n \%$
(so long as you lack any time t inadmissible evidence)

Lewis's Principle of Chance Deference

- For any thought p, any number $n \%$, and any time t,
(LCD) $\quad C\left(p \mid \mathcal{C} h_{t}(p)=n \%\right) \stackrel{!}{=} n \%$
(so long as you lack any time t inadmissible evidence)

Lewis's Principle of Chance Deference

- For any thought p, any number $n \%$, and any time t,

$$
(\mathrm{LCD}) \quad C\left(p \mid \mathcal{C} h_{t}(p)=n \%\right) \stackrel{!}{=} n \%
$$

(so long as you lack any time t inadmissible evidence)

- thoughts are the arguments of your credence function

Lewis's Principle of Chance Deference

- For any thought p, any number $n \%$, and any time t,
(LCD)
$C\left(p \mid \mathcal{C} h_{t}(p)=n \%\right) \stackrel{!}{=} n \%$
(so long as you lack any time t inadmissible evidence)
- thoughts are the arguments of your credence function

Lewis's Principle of Chance Deference

- For any thought p, any number $n \%$, and any time t,

$$
(\mathrm{LCD}) \quad C\left(p \mid \mathcal{C} h_{t}(p)=n \%\right) \stackrel{!}{=} n \%
$$

(so long as you lack any time t inadmissible evidence)

- thoughts are the arguments of your credence function
- Inadmissible evidence: evidence about the future

Lewis's Principle of Chance Deference

- LCD runs into problems with:

Lewis's Principle of Chance Deference

- LCD runs into problems with:
\triangleright a priori knowable contingencies

Lewis's Principle of Chance Deference

- LCD runs into problems with:
\triangleright a priori knowable contingencies
$\triangleright c f$. Hawthorne \& Lasonen-Aarnio, Salmón, Nolan

Lewis's Principle of Chance Deference

- LCD runs into problems with:
\triangleright a priori knowable contingencies
- cf. Hawthorne \& Lasonen-Aarnio, Salmón, Nolan
\triangleright losing track of the time

Problem \#1: Contingent A Priori

- We will flip this coin.

Problem \#1: Contingent A Priori

- We will flip this coin.
- Let's call whichever side of the coin actually lands facing up 'Uppy'.

Problem \#1: Contingent A Priori

- We will flip this coin.
- Let's call whichever side of the coin actually lands facing up 'Uppy'.
- $u:=$ The coin lands on Uppy

Problem \#1: Contingent A Priori

(LCD)
$C\left(p \mid \mathcal{C} h_{t}(p)=n \%\right) \stackrel{!}{=} n \%$

Problem \#1: Contingent A Priori

(LCD)
$C\left(p \mid \mathcal{C h} h_{t}(p)=n \%\right) \stackrel{!}{=} n \%$

Problem \#1: Contingent A Priori

(LCD)
$C\left(u \mid \mathcal{C h}_{t}(u)=50 \%\right) \stackrel{!}{=} 50 \%$

Problem \#1: Contingent A Priori

(LCD)

$$
C\left(u \mid C h_{t}(u)=50 \%\right) \stackrel{!}{=} 50 \%
$$

Problem \#1: Contingent A Priori

(LCD)
$C(u)=50 \%$

Problem \#1: Contingent A Priori

(LCD)

$$
C(u)=50 \%
$$

- But it is a priori knowable that the coin lands on Uppy

Problem \#2: Losing Track of the Time

$$
\begin{array}{ccc}
\mathcal{C} h_{\text {mon }}(m) & \mathcal{C} h_{\text {tues }}(m) & \mathcal{C} h_{\text {wed }}(m) \\
25 \% & 75 \% & - \\
- & 25 \% & 75 \%
\end{array}
$$

It is Tuesday
It is Wednesday

Problem \#2: Losing Track of the Time

$$
\begin{array}{ccc}
\mathcal{C} h_{\text {mon }}(m) & \mathcal{C} h_{\text {tues }}(m) & \mathcal{C} h_{\text {wed }}(m) \\
25 \% & 75 \% & - \\
- & 25 \% & 75 \%
\end{array}
$$

It is Tuesday
It is Wednesday

Problem \#2: Losing Track of the Time

$$
\begin{array}{ccc}
\mathcal{C} h_{\text {mon }}(m) & \mathcal{C h}_{\text {tues }}(m) & \mathcal{C} h_{\text {wed }}(m) \\
25 \% & 75 \% & - \\
- & 25 \% & 75 \%
\end{array}
$$

It is Tuesday
It is Wednesday

Problem \#2: Losing Track of the Time

$$
\begin{array}{ccc}
C h_{\text {mon }}(m) & \mathcal{C h}_{\text {tues }}(m) & \mathcal{C h}_{\text {wed }}(m) \\
25 \% & 75 \% & - \\
- & 25 \% & 75 \%
\end{array}
$$

It is Tuesday
It is Wednesday

Problem \#2: Losing Track of the Time

- So LCD implies:

$$
\begin{aligned}
& C\left(m \mid \mathcal{C h}_{\text {tues }}(m)=25 \%\right) \stackrel{!}{=} 25 \% \\
& C\left(m \mid \mathcal{C h}_{\text {tues }}(m)=75 \%\right) \stackrel{!}{=} 75 \%
\end{aligned}
$$

Problem \#2: Losing Track of the Time

- So LCD implies:

$$
\begin{aligned}
& C\left(m \mid C h_{\text {tues }}(m)=25 \%\right) \stackrel{!}{=} 25 \% \\
& C\left(m \mid \mathcal{C h}_{\text {tues }}(m)=75 \%\right) \stackrel{!}{=} 75 \%
\end{aligned}
$$

Problem \#2: Losing Track of the Time

- So LCD implies:

$$
\begin{array}{r}
C(m \mid \text { weds }) \stackrel{!}{=} 25 \% \\
C\left(m \mid \mathcal{C h}_{\text {tues }}(m)=75 \%\right) \stackrel{!}{=} 75 \%
\end{array}
$$

Problem \#2: Losing Track of the Time

- So LCD implies:

$$
\begin{array}{r}
C(m \mid \text { weds }) \stackrel{!}{=} 25 \% \\
C\left(m \mid \text { Ch }_{\text {tues }}(m)=75 \%\right) \stackrel{!}{=} 75 \%
\end{array}
$$

Problem \#2: Losing Track of the Time

- So LCD implies:

$$
\begin{gathered}
C(m \mid \text { weds }) \stackrel{!}{=} 25 \% \\
C(m \mid \text { tues }) \stackrel{!}{=} 75 \%
\end{gathered}
$$

Problem \#2: Losing Track of the Time

- So LCD implies:

$$
\begin{gathered}
C(m \mid \text { weds }) \stackrel{!}{=} 25 \% \\
C(m \mid \text { tues }) \stackrel{!}{=} 75 \%
\end{gathered}
$$

- This implies:

$$
\begin{aligned}
C(m) & =75 \% \cdot C(\text { tues })+25 \% \cdot C(\text { weds }) \\
& =75 \% \cdot 50 \%+25 \% \cdot 50 \% \\
& =50 \%
\end{aligned}
$$

Problem \#2: Losing Track of the Time

- This is implausible. You know that the current chance of ' m ' is 75%, so you should be 75% sure that m.

Chance Deference

- Lewis's principle has difficulty...

Chance Deference

- Lewis's principle has difficulty...
- ...with thoughts like 'the coin lands on Uppy'

Chance Deference

- Lewis's principle has difficulty...
- ...with thoughts like 'the coin lands on Uppy'
- ...when you've lost track of the time.

§2. A Two-Dimensional, De Se Principle of Chance Deference

Deference to my Doctor

- Principle of doctor deference:

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in ' p ' I should be $n \%$ confident in ' p '.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D(s)
$$

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in ' p ', I should be $n \%$ confident in ' p '.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D(s)
$$

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in 'I am sick', I should be $n \%$ confident in 'I am sick'.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D(s)
$$

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in 'I am sick', I should be $n \%$ confident in 'I am sick'.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D(s)
$$

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in 'Dmitri is sick', I should be $n \%$ confident in 'I am sick'.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D(s)
$$

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in 'Dmitri is sick', I should be $n \%$ confident in 'I am sick'.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D(s)
$$

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in 'Dmitri is sick', I should be $n \%$ confident in 'I am sick'.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D(s)
$$

- ' δ ' is Dmitri's location

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in 'Dmitri is sick', I should be $n \%$ confident in 'I am sick'.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D(s)
$$

- ' δ ' is Dmitri's location
- ' s_{δ} ' is the de dicto δ-surrogate of ' s '.

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in 'Dmitri is sick', I should be $n \%$ confident in 'I am sick'.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D(s)
$$

- ' δ ' is Dmitri's location
- ' s_{δ} ' is the de dicto δ-surrogate of ' s '.

Deference to my Doctor

- Principle of doctor deference:

Given that my doctor is $n \%$ confident in 'Dmitri is sick', I should be $n \%$ confident in 'I am sick'.

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D\left(s_{\delta}\right)
$$

- ' δ ' is Dmitri's location
- ' s_{δ} ' is the de dicto δ-surrogate of ' s '.

§2. A Two-Dimensional, De Se Principle of Chance Deference

Locations and De Dicto Surrogates

Locations

- Purely de se thoughts only say who, when, and where you are, and don't say anything else about the world

Locations

- Purely de se thoughts only say who, when, and where you are, and don't say anything else about the world
- 'Today is Monday',' I am Beyoncé'

Locations

- Purely de se thoughts only say who, when, and where you are, and don't say anything else about the world
- 'Today is Monday',' I am Beyoncé'
- A location is a thought which settles the truth-value of all of your purely de se thoughts (and doesn't settle the truth-value of anything more)

De dicto Surrogates

- Take any thought, ' p ', and any location λ.

De dicto Surrogates

- Take any thought, ' p ', and any location λ.
- The de dicto λ-surrogate of ' p '-written ' p_{λ} '—is true so long as ' p ' expresses a truth when entertained at λ.

De dicto Surrogates

- Take any thought, ' p ', and any location λ.
- The de dicto λ-surrogate of ' p '-written ' p_{λ} '—is true so long as ' p ' expresses a truth when entertained at λ.
- So ' p_{λ} ' says: "the thought ' p ' expresses a truth, when entertained at λ "

De dicto Surrogates and Deference

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D\left(s_{\delta}\right)
$$

- ' δ ' is Dmitri's location

De dicto Surrogates and Deference

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D\left(s_{\delta}\right)
$$

- ' δ ' is Dmitri's location
- ' s_{δ} ' says that 'I am sick' expresses a truth, when entertained at δ.

De dicto Surrogates and Deference

$$
C(s \mid \mathcal{D}=D) \stackrel{!}{=} D\left(s_{\delta}\right)
$$

- ' δ ' is Dmitri's location
- ' s_{δ} ' says that 'I am sick' expresses a truth, when entertained at δ.
\triangleright That is: ' s_{δ} ' says that Dmitri is sick

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

$$
C(u \mid \mathcal{C h}=C h) \stackrel{!}{=} \operatorname{Ch}(u)
$$

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

$$
C(u \mid \mathcal{C h}=C h) \stackrel{!}{=} \operatorname{Ch}(u)
$$

\triangleright Let ' \mathcal{X} ' be your (known) location

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

$$
C(u \mid \mathcal{C h}=C h) \stackrel{!}{=} \operatorname{Ch}(u)
$$

\triangleright Let ' λ ' be your (known) location
\triangleright ' u_{λ} ' says that your thought ' u ' expresses a truth

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

$$
C(u \mid \mathcal{C h}=C h) \stackrel{!}{=} \operatorname{Ch}(u)
$$

\triangleright Let ' λ ' be your (known) location
\triangleright ' u_{λ} ' says that your thought ' u ' expresses a truth

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

$$
C(u \mid \mathcal{C h}=C h) \stackrel{!}{=} C h\left(u_{\lambda}\right)
$$

\triangleright Let ' λ ' be your (known) location
\triangleright ' u_{λ} ' says that your thought ' u ' expresses a truth

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

$$
C(u \mid \mathcal{C h}=C h) \stackrel{!}{=} C h\left(u_{\lambda}\right)
$$

\triangleright Let ' λ ' be your (known) location
\triangleright ' u_{λ} ' says that your thought ' u ' expresses a truth

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

$$
C(u \mid C h=C h) \stackrel{!}{=} 100 \%
$$

\triangleright Let ' λ ' be your (known) location
\triangleright ' u_{λ} ' says that your thought ' u ' expresses a truth

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

$$
C(u \mid C h=C h) \stackrel{!}{=} 100 \%
$$

\triangleright Let ' λ ' be your (known) location
\triangleright ' u_{λ} ' says that your thought ' u ' expresses a truth

Problem \#1: Contingent A Priori

- ' u ' says that the coin lands on Uppy

$$
C(u) \stackrel{!}{=} 100 \%
$$

\triangleright Let ' λ ' be your (known) location
\triangleright ' u_{λ} ' says that your thought ' u ' expresses a truth

Locations and Deference

- Suppose I don't know whether I'm Dmitri or Beyoncé

Locations and Deference

- Suppose I don't know whether I'm Dmitri or Beyoncé
\triangleright Given that I am Dmitri and my doctor is $n \%$ sure that Dmitri is sick, I should be $n \%$ confident in 'I am sick'

Locations and Deference

- Suppose I don't know whether I'm Dmitri or Beyoncé
\triangleright Given that I am Dmitri and my doctor is $n \%$ sure that Dmitri is sick, I should be $n \%$ confident in 'I am sick'
\triangleright Given that I am Beyoncé and my doctor is $n \%$ sure that Beyoncé is sick, I should be $n \%$ confident in 'I am sick'

Locations and Deference

$$
C(s \mid \mathcal{D}=D \wedge \delta) \stackrel{!}{=} D\left(s_{\delta}\right)
$$

Locations and Deference

$$
\begin{aligned}
& C(s \mid \mathcal{D}=D \wedge \delta) \stackrel{!}{=} D\left(s_{\delta}\right) \\
& C(s \mid \mathcal{D}=D \wedge \beta) \stackrel{!}{=} D\left(s_{\beta}\right)
\end{aligned}
$$

Two-Dimensional De Se Deference

Two-Dimensional De Se Deference

 Given that the expert \mathcal{E} 's probability function is E, and given that you are located at λ, your credence in ' p ' should be E 's credence in the de dicto λ-surrogate of ' p^{\prime} ' p_{λ} '.$$
C(p \mid \mathcal{E}=E \wedge \lambda) \stackrel{!}{=} E\left(p_{\lambda}\right)
$$

Two-Dimensional De Se Deference

Two-Dimensional De Se Deference Given that the expert \mathcal{E} 's probability function is E, and given that you are located at λ, your credence in ' p ' should be E's credence in the de dicto λ-surrogate of ' p^{\prime} ' p_{λ} '.

$$
C(p \mid \mathcal{E}=E \wedge \lambda) \stackrel{!}{=} E\left(p_{\lambda}\right)
$$

\triangleright Slogan: Defer to the expert about whether your thoughts are true, given the location at which you are entertaining them.

§2. A Two-Dimensional, De Se Principle of Chance Deference

Chance Deference

Two-Dimensional De Se Chance Deference

Two-Dimensional De Se Chance Deference So long as you lack any time t inadmissible information, your credence in ' p ', given that the time t objective chance function is $C h_{t}$ and given that you are located at λ, should be equal to $C h_{t}\left(p_{\lambda}\right)$.

$$
C\left(p \mid C h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda}\right)
$$

Two-Dimensional De Se Chance Deference

Two-Dimensional De Se Chance Deference So long as you lack any time t inadmissible information, your credence in ' p ', given that the time t objective chance function is $C h_{t}$ and given that you are located at λ, should be equal to $C h_{t}\left(p_{\lambda}\right)$.

$$
C\left(p \mid C h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda}\right)
$$

\triangleright Slogan: Defer to chance about whether your thoughts are true, given the location at which you are entertaining them.

Two-Dimensional De Se Chance Deference

Two-Dimensional De Se Chance Deference So long as you lack any time t inadmissible information, your credence in ' p ', given that the time t objective chance function is $C h_{t}$ and given that you are located at λ, should be equal to $C h_{t}\left(p_{\lambda}\right)$.

$$
C\left(p \mid C h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda}\right)
$$

\triangleright Slogan: Defer to chance about whether your thoughts are true, given the location at which you are entertaining them.

Inadmissible Information

Assuming ur-prior conditionalization:

Inadmissible Information

Assuming ur-prior conditionalization:

$$
C\left(p \mid \mathcal{C} h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)
$$

Inadmissible Information

Assuming ur-prior conditionalization:

$$
C\left(p \mid \mathcal{C} h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)
$$

\triangleright When your total evidence is admissible,

$$
C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)=C h_{t}\left(p_{\lambda}\right)
$$

Inadmissible Information

Assuming ur-prior conditionalization:

$$
C\left(p \mid \mathcal{C} h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)
$$

\triangleright When your total evidence is admissible,

$$
C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)=C h_{t}\left(p_{\lambda}\right)
$$

Inadmissible Information

Assuming ur-prior conditionalization:

$$
C\left(p \mid C h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)
$$

\triangleright When your total evidence is admissible,

$$
C h_{t}\left(e_{\lambda}\right)=100 \%
$$

Inadmissible Information

Assuming ur-prior conditionalization:

$$
C\left(p \mid C h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)
$$

\triangleright When your total evidence is admissible, $C h_{t}\left(e_{\lambda}\right)=100 \%$
\triangleright So let's say: e is inadmissible at t iff $\mathcal{C} h_{t}\left(e_{\lambda}\right)<100 \%$.

Inadmissible Information (Lewis)

Inadmissible Information (Lewis)
e is inadmissible for the time t chances iff e is about times after t

Inadmissible Information

Inadmissible Information

e is inadmissible for the time t chances iff, for some potential location λ and some potential time t chance function $C h_{t}$,

$$
C h_{t}\left(e_{\lambda}\right)<100 \%
$$

Inadmissible Information

Inadmissible Information

e is inadmissible for the time t chances iff, for some potential location λ and some potential time t chance function $C h_{t}$,

$$
C h_{t}\left(e_{\lambda}\right)<100 \%
$$

Inadmissible Information

Inadmissible Information

e is inadmissible for the time t chances iff, for some potential location λ and some potential time t chance function $C h_{t}$,

$$
C h_{t}\left(e_{\lambda}\right)<100 \%
$$

\triangleright Slogan: e is inadmissible just in case it might be news to the objective chances

Two-Dimensional De Se Chance Deference

Two-Dimensional De Se Chance Deference (v2) If ' e ' is your time t inadmissible information, then your credence in ' p ', given that the time t objective chance function is $C h_{t}$ and given that you are located at λ, should be equal to $C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)$.
(CD)

$$
C\left(p \mid \mathcal{C} h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)
$$

Two-Dimensional De Se Chance Deference

Two-Dimensional De Se Chance Deference (v2) If ' e ' is your time t inadmissible information, then your credence in ' p ', given that the time t objective chance function is $C h_{t}$ and given that you are located at λ, should be equal to $C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)$.
(CD)

$$
C\left(p \mid C h_{t}=C h_{t} \wedge \lambda\right) \stackrel{!}{=} C h_{t}\left(p_{\lambda} \mid e_{\lambda}\right)
$$

Problem \#2: Losing Track of the Time

Problem \#2: Losing Track of the Time

$$
\begin{array}{ccc}
\mathcal{C} h_{\text {mon }}(m) & \mathcal{C} h_{\text {tues }}(m) & \mathcal{C} h_{\text {wed }}(m) \\
25 \% & 75 \% & - \\
- & 25 \% & 75 \%
\end{array}
$$

It is Tuesday
It is Wednesday
$\triangleright \tau:=$ 'It is Tuesday'

Problem \#2: Losing Track of the Time

$$
\begin{array}{ccc}
\mathcal{C} h_{\text {mon }}(m) & \mathcal{C} h_{\text {tues }}(m) & \mathcal{C} h_{\text {wed }}(m) \\
25 \% & 75 \% & - \\
- & 25 \% & 75 \%
\end{array}
$$

It is Tuesday
It is Wednesday
$\triangleright \tau:=$ 'It is Tuesday'
$\triangleright \omega:=$ 'It is Wednesday'

Problem \# 2: Losing Track of the Time

- 'Ch $h_{\text {today }}(m)=75 \%$ ' is inadmissible for the Tuesday chances

Problem \# 2: Losing Track of the Time

- 'Ch today $(m)=75 \%$ ' is inadmissible for the Tuesday chances
\triangleright Wednesday is a potential location, and ' $\mathrm{Ch}_{\text {today }}(m)=75 \%_{\omega}$ ' is news to the Tuesday chances

Problem \# 2: Losing Track of the Time

- 'Ch today $(m)=75 \%$ ' is inadmissible for the Tuesday chances
\triangleright Wednesday is a potential location, and ${ }^{\prime} \mathrm{Ch}_{\text {today }}(\mathrm{m})=75 \%{ }_{\omega}$ ' is news to the Tuesday chances

Problem \# 2: Losing Track of the Time

- 'Ch today $(m)=75 \%$ ' is inadmissible for the Tuesday chances
\triangleright Wednesday is a potential location, and ' $C h_{\text {wed }}(m)=75 \%$ ' is news to the Tuesday chances

Problem \# 2: Losing Track of the Time

- 'Ch today $(m)=75 \%$ ' is inadmissible for the Tuesday chances
\triangleright Wednesday is a potential location, and ' $\mathcal{C} h_{\text {wed }}(m)=75 \%$ ' is news to the Tuesday chances
- So: CD won't say that your credence in ' m ', given that it's Wednesday, should be 25%.

Problem \# 2: Losing Track of the Time

- ' $C h_{\text {today }}(m)=75 \%$ ' is inadmissible for the Tuesday chances
\triangleright Wednesday is a potential location, and ' $\mathcal{C} h_{\text {wed }}(m)=75 \%$ ' is news to the Tuesday chances
- So: CD won't say that your credence in ' m ', given that it's Wednesday, should be 25%.
- In fact: it will say that $C(m \mid$ weds $)$ should be 75\%.

In Summary

- CD solves the two problems from $\$ 1$.

In Summary

- CD solves the two problems from $\$ 1$. - it permits certainty in a priori knowable contingencies

In Summary

- CD solves the two problems from $\$ 1$.
- it permits certainty in a priori knowable contingencies
- it gives plausible advice about how to defer to chance when you've lost track of the time

\$3. Sleeping Beauty

Sleeping Beauty

Sleeping Beauty

- On Sunday, you will be put to sleep with a powerful sedative and awoken on Monday morning

Sleeping Beauty

- On Sunday, you will be put to sleep with a powerful sedative and awoken on Monday morning
- On Monday evening, you will be put back to sleep and a fair coin will be flipped.

Sleeping Beauty

- On Sunday, you will be put to sleep with a powerful sedative and awoken on Monday morning
- On Monday evening, you will be put back to sleep and a fair coin will be flipped.
\triangleright If it lands heads, then you will not awoken until Wednesday.

Sleeping Beauty

- On Sunday, you will be put to sleep with a powerful sedative and awoken on Monday morning
- On Monday evening, you will be put back to sleep and a fair coin will be flipped.
\downarrow If it lands heads, then you will not awoken until Wednesday.
- If it lands tails, then your memories of Monday will be erased and you will be awoken again on Tuesday

Sleeping Beauty

- On Sunday, you will be put to sleep with a powerful sedative and awoken on Monday morning
- On Monday evening, you will be put back to sleep and a fair coin will be flipped.
\downarrow If it lands heads, then you will not awoken until Wednesday.
\triangleright If it lands tails, then your memories of Monday will be erased and you will be awoken again on Tuesday
- Also, you're beautiful

Sleeping Beauty

Monday morning:

Sleeping Beauty

Monday morning:

Monday Tuesday

Sleeping Beauty

Monday morning:

Monday Tuesday

Sleeping Beauty

$\triangleright ' h '=$ 'The coin lands heads'

Sleeping Beauty

$\triangleright ' h '=$ 'The coin lands heads'
$\triangleright ' \mu$ 'It is Monday'

Sleeping Beauty

$\Delta ' h$ ' $=$ 'The coin lands heads'
$\triangleright ' \mu$ ' $=$ 'It is Monday'
$\triangleright ' \tau$ ' $=$ 'It is Tuesday'

Sleeping Beauty

$\triangleright ' h$ ' $=$ 'The coin lands heads'
$\Delta \quad{ }^{\prime} \mu$ ' $=$ 'It is Monday'
$\triangleright ~ ' ~ \tau '=~ ' I t ~ i s ~ T u e s d a y ' ~$
\triangleright ' $C h$ ' is any arbitrary function s.t. $C h(h)=50 \%$

Sleeping Beauty

$\triangleright ' h$ ' $=$ 'The coin lands heads'
$\Delta \quad{ }^{\prime} \mu$ ' $=$ 'It is Monday'
$\triangleright ~ ' ~ \tau '=~ ' I t ~ i s ~ T u e s d a y ' ~$
\triangleright ' $C h$ ' is any arbitrary function s.t. $C h(h)=50 \%$
$\triangleright{ }^{\prime} a^{\prime}=$ 'I am awake'

Sleeping Beauty

$\triangleright ' h \prime=$ 'The coin lands heads'
$\triangleright{ }^{\prime} \mu$ ' $=$ 'It is Monday'
$\triangleright ~ ' ~ \tau '=~ ' I t ~ i s ~ T u e s d a y ' ~$
\triangleright ' $C h$ ' is any arbitrary function s.t. $C h(h)=50 \%$
$\triangleright{ }^{\prime} a^{\prime}=$ 'I am awake'
\triangleright ' a ' is inadmissible for the Monday chances, since $C(\tau)>0$, and

$$
\operatorname{Ch}\left(a_{\tau}\right)=50 \%<100 \%
$$

Sleeping Beauty

$\triangleright ' h \prime=$ 'The coin lands heads'
$\triangleright{ }^{\prime} \mu$ ' $=$ 'It is Monday'
$\triangleright ~ ' ~ \tau '=~ ' I t ~ i s ~ T u e s d a y ' ~$
\triangleright ' $C h$ ' is any arbitrary function s.t. $C h(h)=50 \%$
$\triangleright{ }^{\prime} a^{\prime}=$ 'I am awake'
\triangleright ' a ' is inadmissible for the Monday chances, since $C(\tau)>0$, and

$$
\operatorname{Ch}\left(a_{\mu}\right)=100 \%
$$

Sleeping Beauty

$C\left(h \mid \mathcal{C h}_{\text {mon }}=C h \wedge \mu\right) \stackrel{!}{=} \operatorname{Ch}\left(h_{\mu} \mid a_{\mu}\right)$

Sleeping Beauty

$C\left(h \mid \mathcal{C h}_{\text {mon }}=\operatorname{Ch} \wedge \mu\right) \stackrel{!}{=} \operatorname{Ch}\left(h_{\mu} \mid a_{\mu}\right)$

Sleeping Beauty

$$
C\left(h \mid C h_{\text {mon }}=C h \wedge \mu\right) \stackrel{!}{=} C h\left(h_{\mu}\right)
$$

Sleeping Beauty

$$
C\left(h \mid C h_{\text {mon }}=\operatorname{Ch} \wedge \mu\right) \stackrel{!}{=} \operatorname{Ch}\left(h_{\mu}\right)
$$

Sleeping Beauty

$$
C\left(h \mid \mathrm{Ch}_{\text {mon }}=C h \wedge \mu\right) \stackrel{!}{=} C h(h)
$$

Sleeping Beauty

$$
C\left(h \mid \mathcal{C h}_{\text {mon }}=C h \wedge \mu\right) \stackrel{!}{=} C h(h)
$$

Sleeping Beauty

$$
C\left(h \mid \mathcal{C h}_{\text {mon }}=C h \wedge \mu\right) \stackrel{!}{=} C h(h)
$$

Sleeping Beauty

$$
C\left(h \mid C h_{\text {mon }}=C h \wedge \mu\right) \stackrel{!}{=} 50 \%
$$

Sleeping Beauty

$$
C\left(h \mid C h_{m o n}=C h \wedge \mu\right) \stackrel{!}{=} 50 \%
$$

Sleeping Beauty

$$
C(h \mid \mu) \stackrel{!}{=} 50 \%
$$

Sleeping Beauty

$$
C(h \mid \mu) \stackrel{!}{=} 50 \%
$$

Monday Tuesday

Sleeping Beauty

$$
C(h \mid \mu) \stackrel{!}{=} 50 \%
$$

Sleeping Beauty

$$
C(h \mid \mu) \stackrel{!}{=} 50 \%
$$

Monday Tuesday

Sleeping Beauty

$$
C(h \mid \mu) \stackrel{!}{=} 50 \%
$$

Sleeping Beauty

- The thirder's credence departs from the known chance of heads

Sleeping Beauty

- The thirder's credence departs from the known chance of heads
- But this is because they have the inadmissible evidence that they are awake

Sleeping Beauty

- The thirder's credence departs from the known chance of heads
- But this is because they have the inadmissible evidence that they are awake
- Not evidence about the future

Sleeping Beauty

- The thirder's credence departs from the known chance of heads
- But this is because they have the inadmissible evidence that they are awake
\triangleright Not evidence about the future
\triangleright But evidence which might be news to the Monday chances
§4. In Summation

In Summation

- Principles of chance deference have difficulties with thoughts like...

In Summation

- Principles of chance deference have difficulties with thoughts like...
- ...'The coin lands on Uppy'

In Summation

- Principles of chance deference have difficulties with thoughts like...
- ...'The coin lands on Uppy'
\triangleright...'The current chance of ' p ' is $n \%$ '

In Summation

- I defined the notion of a de dicto λ-surrogate for a thought, ' p ', given a location λ : ' p_{λ} '

In Summation

- I defined the notion of a de dicto λ-surrogate for a thought, ' p ', given a location λ : ' p_{λ} '
- I proposed a modification of principles of expert deference:

$$
C(p \mid \mathcal{E}=E \wedge \lambda)=E\left(p_{\lambda}\right)
$$

In Summation

- In the case of chance, this principle...

In Summation

- In the case of chance, this principle...
\triangleright...says that your credence in a priori contingencies like 'the coin lands Beatrice up' should be 100\%

In Summation

- In the case of chance, this principle...
\triangleright...says that your credence in a priori contingencies like 'the coin lands Beatrice up' should be 100\%
\triangleright...gives sensible advice about how to defer to chance when you've lost track of the time

In Summation

- In the case of chance, this principle...
\triangleright...says that your credence in a priori
contingencies like 'the coin lands Beatrice up' should be 100\%
\triangleright...gives sensible advice about how to defer to chance when you've lost track of the time
- ...is consistent with the thirder's-but not the halfer's-solution to the Sleeping Beauty puzzle

Loppu

