
Symbolic Logic

J. Dmitri Gallow

Draft of January 5, 2016



Contents

1 Basic Concepts of Logic 1

2 Sentence Logic 5
2.1 Syntax for SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Main Operators and Subformulae . . . . . . . . . . . . . . . . 7

2.2 Semantics for SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 The Meaning of the Statement Letters . . . . . . . . . . . . . . 10
2.2.2 The Meaning of ‘∼’ . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 The Meaning of ‘&’ . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 The Meaning of ‘∨’ . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 The Meaning of ‘⊃’ . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.6 The Meaning of ‘≡’ . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.7 Determining the Truth-value of a wff of SL . . . . . . . . . . . 12

2.3 Translation from SL to English . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Translation from English to SL . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Conjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Disjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.4 The Material Conditional and Biconditional . . . . . . . . . . . 21

2.5 What a Truth-Table Represents . . . . . . . . . . . . . . . . . . . . . . 21
2.6 SL Tautologies, Contradictions, and Contingencies . . . . . . . . . . . . 22
2.7 SL Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Disjunctive Normal Form and Expressive Completeness . . . . . . . . . 24

2.8.1 Disjunctive Normal Form . . . . . . . . . . . . . . . . . . . . . 24
2.8.2 Expressive Completeness . . . . . . . . . . . . . . . . . . . . . 28

2.9 SL-Validity and SL-Invalidity . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 SL-Validity and SL-Tautologies . . . . . . . . . . . . . . . . . . . . . . 35
2.11 SL-Consistency & SL-Inconsistency . . . . . . . . . . . . . . . . . . . . 36
2.12 SL-Consistency and the Other Logical Properties of SL . . . . . . . . . 38

i



Contents ii

3 Sentence Logic Trees 42
3.1 Truth Trees: The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Rules for Truth Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Summary of Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Strategies for Applying Rules . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 ST-Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Reading Truth-Value Assignments off of Open Branches . . . . . . . . 57
3.7 ST-Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8 ST-Tautologies, ST-Contradictions, and ST-Contingencies . . . . . . . 64

3.8.1 ST-Tautologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8.2 ST-Contradictions . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8.3 ST-Contingencies . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 ST-Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Predicate Logic 70
4.1 The Language PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 The Syntax of PL . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.2 Semantics for PL . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.3 More on PL-Interpretations of Predicates . . . . . . . . . . . . 81
4.1.4 Truth on an Interpretation . . . . . . . . . . . . . . . . . . . . 83
4.1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 PL-Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Proving PL-validity and the method of Semantic Proof . . . . . . . . . 90
4.4 Translations from PL into English . . . . . . . . . . . . . . . . . . . . . 92

4.4.1 Translating Atomic wffs of PL . . . . . . . . . . . . . . . . . . 92
4.4.2 Translating Simple Quantified wffs of PL . . . . . . . . . . . . 93
4.4.3 Translating More Complicated Quantified wffs of PL . . . . . . 94

4.5 Translations from English into PL . . . . . . . . . . . . . . . . . . . . . 97
4.6 Overlapping Quantifiers and Relational Predicates . . . . . . . . . . . . 99

4.6.1 Changing the Order of the Quantifiers . . . . . . . . . . . . . . 100
4.6.2 Changing the Order of the Bound Variables . . . . . . . . . . . 104
4.6.3 Translating ‘(∀x)(∃y)Rxy’ and ‘(∀x)(∃y)Ryx’ . . . . . . . . . . 106
4.6.4 Changing the Order of the Quantifiers and the Order of the

Bound Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Predicate Logic Trees 109
5.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Predicate Logic Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Rule for Universally Quantified Wffs . . . . . . . . . . . . . . . 111
5.2.2 Rule for Existentially Quantified Wffs . . . . . . . . . . . . . . 115
5.2.3 Rules for Negations of Quantified Wffs . . . . . . . . . . . . . . 117

5.3 Strategies for Applying Rules . . . . . . . . . . . . . . . . . . . . . . . 119
5.4 Sample Predicate Logic Trees . . . . . . . . . . . . . . . . . . . . . . . 120
5.5 Logical Properties of PL . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.6 PT -Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 Reading Partial PL Interpretations off of Open Branches . . . . . . . . 124



Contents iii

5.8 PT Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.9 PT Tautologies, PT Contradictions, and PT Contingencies . . . . . . . 128
5.10 PT -Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.11 Infinite Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Predicate Logic with Identity and Functions 140
6.1 The Language PLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.1.1 Preliminary Orientation . . . . . . . . . . . . . . . . . . . . . . 140
6.1.2 Syntax for PLI . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1.3 Semantics for PLI . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.1.4 More on PLI-Interpretations of Function Symbols . . . . . . . 147
6.1.5 Truth on a PLI Interpretation . . . . . . . . . . . . . . . . . . . 150

6.2 Logical Notions of PLI . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 Trees for PLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.1 The Rule (=) . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.2 The Rule (, ×) . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.3 Completing Trees . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4 PT I Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.5 PT I Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.6 PT I Tautologies, Contingencies, and Contradictions . . . . . . . . . . . 163

6.6.1 Properties of Identity . . . . . . . . . . . . . . . . . . . . . . . 164
6.7 PT I Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.8 Infinite PLI Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.9 Number Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.10 The Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.11 Definite Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7 Metatheory for Sentence Logic 179
7.1 Use & Mention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2 Object Language & Metalanguage . . . . . . . . . . . . . . . . . . . . 180
7.3 Metavariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3.1 Use and Mention with Metavariables . . . . . . . . . . . . . . . 182
7.4 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.5 Syntactic Validity and Semantic Validity . . . . . . . . . . . . . . . . . 186
7.6 Soundness and Completeness of the Tree Method . . . . . . . . . . . . 187
7.7 Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.7.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.7.2 Examples of Mathematical Induction . . . . . . . . . . . . . . . 193

7.8 Varieties of Mathematical Induction . . . . . . . . . . . . . . . . . . . 195
7.9 Choosing the Right Inductive Property . . . . . . . . . . . . . . . . . . 197
7.10 More Examples of Mathematical Induction . . . . . . . . . . . . . . . . 199

7.10.1 Number of Parentheses . . . . . . . . . . . . . . . . . . . . . . 201
7.10.2 Substitution of SL-equivalents . . . . . . . . . . . . . . . . . . 204
7.10.3 Duals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208



Contents iv

8 Soundness of the Tree Method for Sentence Logic 211
8.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.2 The Proof in Broad Outline . . . . . . . . . . . . . . . . . . . . . . . . 213
8.3 Proof that the Tree Method for SL is Sound . . . . . . . . . . . . . . . . 215

9 Completeness of the Tree Method for Sentence Logic 225
9.1 The Proof in Broad Outline . . . . . . . . . . . . . . . . . . . . . . . . 226
9.2 Proof that the Tree Method for SL is Complete . . . . . . . . . . . . . . 227



Chapter 1

Basic Concepts of Logic

1. Logic is the study of arguments.

(a) An argument is (for our purposes), just a collection of statements (or
declarative sentences), one of which is designated as the conclusion,
the remainder of which are designated as premises.

(b) A statement (declarative sentence) is a sentence of which it makes sense to
say that it is true or false.

i. It’s true/false that it is Monday. ✓ −→ ‘It is Monday’ is a state-
ment.

ii. It’s true/false that close the door! × −→ ‘Close the door!’ is not
a statement.

2. There are many good-making features that an argument can have.

(a) The premises can give good (though not conclusive) reason to accept the
conclusion.

(b) The premises can be true.

(c) The premises can be probable.
...

3. In this course, we’ll just be focusing on one good-making feature that an argument
can have: the property of deductive validity.

Deductive Validity An argument is deductively valid if and only if (‘iff ’)
there is no possible scenario in which the premises are all true while the
conclusion is false.

1
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An argument is deductively invalid iff it is not deductively valid.

Deductive Invalidity An argument is deductively invalid iff there is a
possible scenario in which the premises are all true while the conclusion
is false.

4. We may also characterize deductive validity in terms of the notion of a counterex-
ample.

Counterexample A counterexample to the deductive validity of an argu-
ment is a specification of a possibility in which the premises of the argument
are all true yet the conclusion is simultaneously false.

Then,

Deductive Validity (2) Anargument is deductivelyvalid iff it has no coun-
terexample.

Deductive Invalidity (2) An argument is deductively invalid iff it has a
counterexample.

5. What we want is a theory that tells us, of any given argument, whether it is de-
ductively valid (or just ‘valid’) or deductively invalid.

6. Other important logical notions:

(a) Logical properties of statements: Statements can be logical tautologies, logi-
cal contradictions, or logical contingencies.

Logical Tautology A statement ⌜A⌝ is a logical tautology iff there is no
possibility in which ⌜A⌝ is false (i.e., iff ⌜A⌝ is true in every possibility).

Logical Contradiction A statement ⌜A⌝ is a logical contradic-
tion iff there is no possibility in which ⌜A⌝ is true (i.e., iff ⌜A⌝ is false
in every possibility).

Logical Contingency A statement ⌜A⌝ is a logical contingency iff
there is some possibility in which ⌜A⌝ is true and some possibility in
which ⌜A⌝ is false.

(b) A logical property of pairs of statements: pairs of statements can be logically
equivalent.

Logical Equivalence Apair of statements, ⌜A⌝ and ⌜B⌝, are logically
equivalent iff ⌜A⌝ and ⌜B⌝ are true in all the same possibilities and
false in all the same possibilities (i.e., iff it is impossible for ⌜A⌝ and
⌜B⌝ to have different truth-values).

(c) Logical properties of sets of statements: A set of statements can be logically
consistent or logically inconsistent.
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Logical Property Applies Only To
Deductive Validity Arguments
Deductive Invalidity Arguments
Logical Tautology individual statements
Logical Contradiction individual statements
Logical Contingency individual statements
Logical Equivalence pairs of statements
Logical Consistency sets of statements
Logical Inconsistency sets of statements

Figure 1.1: : Logical properties and the kinds of entities to which they apply.

Logical Consistency A set of statements { ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N} is logi-
callyconsistent iff there is somepossibility inwhich ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N
are all true.

Logical Inconsistency Aset of statements { ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N} is log-
ically inconsistent iff there is no possibility inwhich ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N
are all true.

7. Special cases of deductive validity.

(a) If there’s no possibility inwhich all of the premises are true (i.e., if the premises
are logically inconsistent), then there’s no possibility in which all of the
premises are true and the conclusion is false. So the following arguments
are deductively valid.

1. John is taller than Mary.
2. Mary is taller than John.
3. So, Dinosaurs are not extinct.

1. It is raining today.
2. It is not raining today.
3. So, F.D.R. conquered Mesopotamia.

(b) If there’s no possibility in which the conclusion is false (i.e., if the conclusion
is a logical tautology), then there’s no possibility inwhich the premises are all
true and the conclusion is false. So the following arguments are deductively
valid.
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1. I hate jam.
2. Kesha is the voice of a generation.
3. So, if today’s Monday, then today’s Monday.

1. Hamsters eat only cheese.
2. Running is faster than flying.
3. So, either Obama’s president or Obama’s not president.



Chapter 2

Sentence Logic

The plan: we’re going to construct an artificial language, call it ‘SL’ (for ‘sentence logic’)
withinwhichwe can be rigorous and precise aboutwhich arguments are valid andwhich
are invalid. This, together with a method for translating from English into SL (and out
of SL into English) will allow us to theorize about which English-language arguments
are deductively valid and which are deductively invalid.

In general, we can specify a language by doing three things: 1) giving the vocabulary
for the language, 2) giving the grammar of the language—that is, specifying which ways
of sticking together the expressions from the vocabulary are grammatical, and 3) say-
ing what the meaning of every grammatical expression is. For instance, in English, the
vocabulary consists of all of the words of English. The grammar for English consists of
rules saying when various strings of English words count as grammatical English sen-
tences. ‘Bubbie makes pickles’ and ‘Colorless green ideas sleep furiously’ will count as
grammatical sentences, whereas ‘Up bouncy ball door John variously catapult’ does not
count as a grammatical sentence. Finally, themeaning of every English sentence is given
by providing a dictionary entry for every word of English and providing rules for un-
derstanding the meaning of sentences in terms of the meanings of the words appearing
in the sentence. The first two tasks are the tasks of specifying the syntax of the language.
The final task is the fast of specifying the semantics of the language.

syntax −−
 1. Vocabulary

2. Grammar
semantics −−3. Meaning

That’s exactly what we’re going to do for our artificial language SL. However, our task
will be much simpler than the task of specifying English, as we will have a far simpler

5
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vocabulary, a far simpler grammar, and a far simpler semantics.

2.1 Syntax for SL

2.1.1 Vocabulary

The vocabulary of SL includes the following symbols:

1. All capital letters (known as atomic sentences, or sentence letters),

A, B, C, ..., Y , Z

2. logical operators:
∼, &,∨,⊃,≡

3. parenthases
( , )

Nothing else is included in the vocabulary of SL.

2.1.2 Grammar

However, only one—the third—is a well-formed formula (or ‘wff ’) of SL. We specify
what it is for a string of symbols from the vocabulary of SL to be a well-formed formula
(or ‘wff ’) of SL with the following rules.

A) Any statement letter, by itself, is a wff—known as an atomic wff.

∼) If ⌜P⌝ is a wff, then ⌜(∼P)⌝ is a wff—known as a negation; and ⌜P⌝ is known as
its negand.

&) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P & Q)⌝ is a wff—known as a conjunction; and
⌜P⌝ and ⌜Q⌝ are known as its conjuncts.

∨) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P∨Q)⌝ is a wff—known as a disjunction; and
⌜P⌝ and ⌜Q⌝ are known as its disjuncts.

⊃) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P ⊃ Q)⌝ is a wff—known as a conditional; ⌜P⌝
is known as its antecedent, and ⌜Q⌝ its consequent.
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≡) If ⌜P⌝ and ⌜Q⌝’ are wffs, then ⌜(P ≡ Q)⌝ is a wff—known as a biconditional; ⌜P⌝
is known as its left-hand-side, and ⌜Q⌝ its right-hand-side.

−) Nothing else is a wff.

Note: ‘P’ and ‘Q’ do not appear in the vocabulary of SL. They are not themselves wffs of
SL. Rather, they are being used here as formulae variables—they are variables whose
potential values are formulae of SL.

All and only the strings of symbols that can be constructed by repeated application of
the rules above are well-formed formulae. To show that ‘((∼(P∨Q)) ⊃ R)’ is a wff, we
could walk through the following steps to build the formula up:

a) ‘P’ is a wff [from (A)]

b) ‘Q’ is a wff [from (A)]

c) So, ‘(P∨ Q)’ is a wff [from (a) and (b) and (∨)]

d) So, ‘(∼(P∨ Q))’ is a wff [from (c) and (∼)]

e) ‘R’ is a wff [from (A)]

f) So, ‘((∼(P∨ Q)) ⊃ R)’ is a wff [from (d), (e), and (⊃)]

The (⊃) rule requires that we include the outermost parentheses around the expres-
sion ‘(∼(P ∨ Q)) ⊃ R’, and the (∼) rule requires that we include parenthases around
‘∼(P ∨ Q)’. However, I will adopt the standard convention of omitting the outermost
parenthases and omitting the parenthases surrounding a negation, writing, e.g., ‘∼(P∨
Q) ⊃ R’ rather than ‘((∼(P ∨ Q)) ⊃ R)’. This convention is harmless, but you should
bear in mind that, strictly speaking, formula like ‘∼(P∨ Q) ⊃ R’ are not wffs of SL.

2.1.3 Main Operators and Subformulae

Given the rules for wffs provided above, we can give a simple definition of what a wff ’s
main operator is. The wff’s main operator is just the operator associated with the last
rule which would have to be applied if we were building the formula up by applying
the rules for wffs above. For instance, if we want to know what the main operator is
for the wff ‘(∼P) & Q’, we would just imagine running through the following proof that
‘(∼P) & Q’ is a wff of SL, by applying to the rules for well formed formulae, i.e.,

a) ‘P’ is a wff [from (A)]

b) So, ‘(∼P)’ is a wff [from (a) and (∼)]
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c) ‘Q’ is a wff [from (A)]

d) So, ‘((∼P) & Q)’ is a wff [from (b), (c), and (&)]

Here, the fact that we had to appeal to the rule (&) in the final step of building up
‘((∼P) & Q)’ tells us that & is the main operator. Imagine that we had tried to build
up the formula in some other way. For instance, suppose we had attempted to first apply
the rule (&) and then the rule (∼). Then, our derivation would have gone line this.

a) ‘P’ is a wff [from (A)]

b) ‘Q’ is a wff [from (A)]

c) So, ‘(P & Q)’ is a wff [from (a), (b), and (&)]

d) So, ‘(∼(P & Q))’ is a wff [from (c) and (∼)]

This is an entirely different wff. ‘(∼(P & Q))’ is not the same as ‘((∼P) & Q)’. While
the main operator of ‘((∼P) & Q)’ is & , the main operator of ‘(∼(P & Q))’ is ∼.

We can also use the rules for wffs to give a definition of what a wff ’s subformulae are.
p is a subformula of q if and only if, in the course of building up q by applying the
rules for wffs, p appears on a line before q. So, for instance ‘(∼ P)’ is a subformula of
‘((∼ P) & Q)’ (because it shows up on line (b) of that wff ’s derivation), whereas ‘∼ P’ is
not a subformula of ‘(∼ (P & Q))’ (since it does not show up at any point in that wff ’s
derivation).

A formula’s immediate subformulae are those wffs whose lines were appealed to in the fi-
nal step of building to formula up. For instance, the immediate subformulae of ‘((∼P) & Q)’
are ‘(∼P)’ and ‘Q’, whereas the immediate subformula of ‘(∼(P & Q))’ is ‘(P & Q)’. A
wff ’s immediate subformulae are just those formulae on which the wff ’s main operator
operates.

Another way of notating the proofs that certain formulae are wffs of SL is with syntax
trees. For instance, we could represent our proof that ‘((∼ (P ∨ Q)) ⊃ R)’ is a wff of
SL with the following syntax tree.



2.1. Syntax for SL 9

((∼ (P∨ Q)) ⊃ R)

(⊃)

(∼ (P∨ Q))

(∼)

(P∨ Q)

(∨)

P

(A)

Q

(A)

R

(A)

This tree tells us, firstly, that ‘P’ and ‘Q’ are wffs of SL (by rule (A)). Then, by rule (∨),
‘(P ∨ Q)’ is a wff. Then, by rule (∼), ‘(∼ (P ∨ Q))’ is a wff. And, since ‘R’ is a wff, by
(A), ‘((∼(P∨ Q)) ⊃ R)’ is a wff (by rule (⊃)).

If wewant to leave out the rules, we can represent this syntax treemore simply as follows.

((∼(P∨ Q)) ⊃ R)

(∼(P∨ Q))

(P∨ Q)

P Q

R

We can similarly write out the syntax trees for ‘((∼P) & Q)’ and ‘(∼(P & Q))’ like so.

((∼ P) & Q)

(∼ P)

P

Q

(∼ (P & Q))

(P & Q)

P Q

These trees give us the syntactic structure of a wff of SL. They highlight what the paren-
thases were already telling us about what the main operator of the sentence is, what its
subformulae are, and how the various subformulae are interrelated (how the sentence is
built up out of its subformulae). For instance, the tree on the left tells us that the imme-
diate subformulae of ‘((∼P) & Q)’ are ‘(∼P)’ and ‘Q’. And the tree on the right tells us
that the immediate subformula of ‘(∼(P & Q))’ is ‘(P & Q)’.
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2.2 Semantics for SL

Wenowneed to say something about themeaning of the wffs appearing in SL. Through-
out, our assumption will be that what it is to understand the meaning of an expression
is just to understand the circumstances in which it is true.

There are three components to the vocabulary of SL: the statement letters, the logical
operators, and the parenthases. The parenthases do not add anything to the meaning of
the sentences of SL. They merely serve as notational tools that help us avoid ambiguity.
Put them aside. We must then say what the meanings of the statements letters are and
what the meanings of the logical operators are.

2.2.1 TheMeaning of the Statement Letters

Each statement letter represents a statement in English. The statement letter is true if and
only if the statement in English is true. That is: statement letters inherit their meaning
from their English translations.

2.2.2 TheMeaning of ‘∼’

If a wff ⌜P⌝, is true, then ⌜∼P⌝ is false. If a wff ⌜P⌝ is false, then ⌜∼P⌝ is true. To
write this a bit more perspicaciously, we can use the letters ‘T ’ and ‘F’ to stand for the
truth-values true and false. Then, for any wff ⌜P⌝, if ⌜P⌝ is T , then ⌜∼P⌝ is F. If ⌜P⌝ is
F, then ⌜∼P⌝ is T . We can summarize this with the following truth table.

P ∼P

T F

F T

This table tells us how the truth-value of a wff of the form ⌜∼P⌝ is determined by the
truth-value of ⌜P⌝. If we understand the circumstances under which ⌜P⌝ is true, then
the above definition gives us all that we need to understand the circumstances under
which ⌜∼P⌝ is true. So we’ve said enough to say what the meaning of ‘∼’ is.

Note that ‘P’ is not a wff of SL—statement letters are not bolded. Rather, we are using
the boldface ‘P’ and ‘Q’ as variables ranging over the wffs of SL.
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2.2.3 TheMeaning of ‘&’

A conjunction is true iff both of its conjuncts are true. Using a truth-table, this means
that:

P Q P & Q

T T T

T F F

F T F

F F F

This table tells us how the truth-value of a wff of the form ⌜P & Q⌝ is determined by
the truth-values of ⌜P⌝ and ⌜Q⌝. If we understand the circumstances under which ⌜P⌝
and ⌜Q⌝ are true, then this definition gives us enough to understand the circumstances
under which ⌜P & Q⌝ is true. So we’ve said enough to say what the meaning of ‘&’ is.

2.2.4 TheMeaning of ‘∨’

A disjunction is true iff at least one of its disjuncts is true.

P Q P∨Q

T T T

T F T

F T T

F F F

This table tells us how the truth-value of a wff of the form ⌜P ∨Q⌝ is determined by
the truth-value of ⌜P⌝ and ⌜Q⌝. If we understand the circumstances under which ⌜P⌝
and ⌜Q⌝ are true, then this definition gives us enough to understand the circumstances
under which ⌜P∨Q⌝ is true. So we’ve said enough to say what the meaning of ‘∨’ is.
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2.2.5 TheMeaning of ‘⊃’

A conditional is true iff either its antecedent is false or its consequent is true.

P Q P ⊃ Q

T T T

T F F

F T T

F F T

As before, the above table gives us enough to understand the circumstances underwhich
awff of the form ⌜P ⊃ Q⌝ is true, assuming that we understand the circumstances under
which ⌜P⌝ and ⌜Q⌝ are true. So this table defines the meaning of the operator ‘⊃’.

Note that this is the only binary operatorwhich is not symmetric. That is, while ⌜P & Q⌝

has the same meaning as ⌜Q & P⌝, ⌜P ∨Q⌝ has the same meaning as ⌜Q ∨ P⌝, and
⌜P ≡ Q⌝ has the same meaning as ⌜Q ≡ P⌝, ⌜P ⊃ Q⌝ does not have the same meaning
as ⌜Q ⊃ P⌝.

2.2.6 TheMeaning of ‘≡’

A biconditional is true iff its right hand side and its left hand side have the same truth-
value.

P Q P ≡ Q

T T T

T F F

F T F

F F T

Again, this table gives us enough to understand the circumstances under which a wff of
the form ⌜P ≡ Q⌝ is true, assuming that we understand the circumstances under which
⌜P⌝ and ⌜Q⌝ are true. So this table defines the meaning of the operator ‘≡’.

2.2.7 Determining the Truth-value of a wff of SL

If we know the truth-value of all the statement letters appearing in a wff of SL, then we
can use our knowledge of the syntactic structure of the wff to determine its truth value.
For instance, suppose that we know that ‘P’ is true and that ‘Q’ is false. Then, we know
that ‘∼P & Q’ is false, and that ‘∼(P & Q)’ is true.
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(∼P & Q)[F]

∼P[F]

P [T ]

Q[F]

∼(P & Q)[T ]

(P & Q)[F]

P[T ] Q[F]

We can do the very same thing with truth-tables. For instance, to construct the truth-
table for the wff ‘∼P & Q’, begin by writing out all the possible truth-values for P and
Q.

P Q ∼ P & Q

T T

T F

F T

F F

Then, copy the column of truth-values for P, placing it beneath every appearance of the
statement letter P, and do the same for Q.

P Q ∼ P & Q

T T T T

T F T F

F T F T

F F F F

Then, begin working your way up the syntactic structure of the sentence by calculating
the truth-values of the subformulae appearing in the wff. We know how to calculate the
truth-value of ‘∼P’, given the truth-value of ‘P’ (from the truth-table for ∼ which tells
us the meaning of ‘∼’), so do that first, placing the appropriate truth-values beneath the
main connective of the subformulae ‘∼P’.

P Q ∼ P & Q

T T F T T

T F F T F

F T T F T

F F T F F

Now, we have to calculate the column of truth-values of ‘∼P & Q’, writing them out
beneath the main connective of that wff—the ‘ & ’. The truth-value of ‘∼P & Q’ is a
function of the truth-values of ‘∼P’ and ‘Q’, and not the truth values of ‘P’ and ‘Q’, so we
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must look at the bolded columns of truth-values below.

P Q ∼ P & Q

T T F T T
T F F T F
F T T F T
F F T F F

Now, we can simply look to the truth-table for ‘ & ’ to figure out what column of truth-
values ought to go beneath the ‘ & ’ in ‘∼P & Q’. Since ‘ & ’ is the main operator of the
wff, this tells us the column of truth-values associated with the wff ‘∼P & Q’. To indicate
that this column of truth-values is the column associated with the main operator of the
wff ‘∼P & Q’, we may put a box around this column.

P Q ∼ P & Q
T T F T F T
T F F T F F
F T T F T T
F F T F F F

This truth-table tells us how the truth-value of ‘∼P & Q’ is determined by the truth-
values of ‘P’ and ‘Q’. If ‘P’ is false and ‘Q’ is true, then ‘∼P & Q’ is true. Otherwise,
‘∼P & Q’ is false.

If we do the same thing with the wff ‘∼(P & Q)’, we will arrive at the following truth-
table.

P Q ∼ (P & Q)

T T F T T T
T F T T F F
F T T F F T
F F T F F F

This shows us how important it is to pay attention to the syntactic structure of the dif-
ferent wffs of SL—they end up making a difference to the meaning of those sentences.
If we’re not careful with our parenthases, we’ll lose a big advantage of using a formal
language—namely, that the sentences in SL are not ambiguous between different mean-
ings.
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2.3 Translation from SL to English

The meanings of ∼, & , ∨, ⊃, and ≡ are given by the truth-tables in the previous section.
However, when we look at those meanings, it is difficult to not see some commonalities
between these operators and some common English words. In particular, it appears
that there’s a very close connection between the meaning of ‘∼’ and the meaning of ‘it is
not the case that’; a very close connection between ‘∨’ and ‘or’; a very close connection
between ‘ & ’ and ‘and’.

Submitted for your approval: the following provides a translation guide from SL to En-
glish.

∼p −→ It is not the case that p

p & q −→ Both p and q

p∨ q −→ Either p or q

p ⊃ q −→ If p, then q

p ≡ q −→ p if and only if q

This translation guide requires some provisos. In the first place: there appears to be an
important difference between the meaning of ‘p ⊃ q’ and ‘if p, then q’. The difference
is this: if ‘p’ is false, then ‘p ⊃ q’ is automatically true, no matter what statement q
represents, and no matter what kind of connection there is between p and q. However, we
wouldn’t ordinarily think that the sentence ‘if John Adams was America’s first president,
then eating soap cures cancer’ is true, just in virtue of the fact that ‘John Adams was
America’s first president’ is false. So it must be that ‘if p, then q’ differs in meaning from
‘p ⊃ q’. I think that this is exactly right. However, there is still some close connection
between the meanings of these two claims. To bring that connection out, suppose that
I make the following claim:

If it’s a weekday, then I’m on campus.

And suppose that Steve makes the claim,

If I’m on campus, then it’s a weekday.

Think about the circumstances under which you could justly say that Steve or I had lied.
If it’s a weekday, but I’m not on campus, then I have lied. If, however, it’s a weekday but
Steve is not on campus, then he hasn’t lied. After all, he never said that he would be on
campus every weekday. He just said that, if he’s on campus, then it’s a weekday. But he
did not commit himself to ever coming to campus at all. On the other hand, suppose
that I’m on campus during the weekend. Then, you wouldn’t be able to say that I had
lied. For I never said that I would stay home during the weekend. I just said that, if it’s
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a weekday, then I’m on campus. However, if Steve is on campus during the weekend,
then Steve has lied. After all, he said that he’d only be on campus on weekdays. Using
‘D’ to represent the statement ‘Dmitri is on campus’, ‘S ’ to represent ‘Steve is on campus’
and ‘W ’ to represent ‘it is a weekday’, then it looks like the possibilities in which you can
say that I have lied are just the possibilities in which the material conditional ‘W ⊃ D’ is
false.

D W if W , then D W ⊃ D
T T didn’t lie T
T F didn’t lie T
F T lied F
F F didn’t lie T

And it looks like the possibilities in which you can say that Steve has lied are just the
possibilities in which you can say that the material conditional ‘S ⊃ W ’ is false.

S W if S , then W S ⊃ W
T T didn’t lie T
T F lied F
F T didn’t lie T
F F didn’t lie T

So, even though the translation isn’t perfect, it’s still pretty good. Moreover, even if a
SL wff of the form ‘p ⊃ q’ might be better translated into English with ‘Either it is not
the case that p or q’, it appears as though ‘p ⊃ q’ is the best possible SL-translation
of the English ‘if p, then q’. So that’s how we’ll be translating it here. But if you think
the translation is less than perfect, you’re absolutely correct. There are more advanced
logics which attempt to give a better translation of the English conditional, but they are
beyond the purview of this course.

In the second place: ‘or’ is used in English in two different senses. In one sense, called
the ‘inclusive or’, a statement of the form ‘p or q’ is true if and only at least one of ‘p’ and
‘q’ are true—that is, it is true if and only if either ‘p’ is true, or ‘q’ is true, or both are true.
For instance, if I say to you ‘either the elevator or the escalator is working’, then I haven’t
lied to you if they are both working. To see this more clearly, think about the sentence
‘if either the elevator or the escalator is working, then you will be in compliance with
the Americans with Disabilities Act’. If both are working and you are not in compliance
with the ADA, then I have lied to you. However, if ‘either the elevator or the escalator is
working’ were false when they are both working, then I couldn’t have lied to you.

Inclusive ‘or’: In the inclusive sense ‘p or q’ means ‘Either ‘p’ or ‘q’ or both.’
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In another sense, called the ‘exclusive or’, a statement of the form ‘p or q’ is true if and
only if at least and at most one of ‘p’ and ‘q’ are true. That is, in the exclusive sense,
‘p or q’ means ‘p or q, but not both’. For instance, if your parent tells you, ‘Either you
clean your room, or you’re grounded’, you clean your room, and your parent grounds
you, then you can fairly complain that they lied.

Exclusive ‘or’: In the exclusive sense ‘p or q’ means ‘Either ‘p’ or ‘q’, but not
both.’

When I say that ‘p∨ q’ may be translated as ‘p or q’, I am using ‘or’ in its inclusive sense—
that is, I am using it to mean ‘p or q or both’.

‘∨’ translates to the inclusive ‘or’

Let’s call the phrases on the right-hand-side of the translation guide above the canonical
logical expressions of English. If the logical structure of an English statement is written
in this form, then that statement is in canonical logical form. For instance, the following
claim is in canonical logical form:

If both John loves Andrew and it is not the case that Andrew loves John,
then it is not the case that John and Andrew will be friends.

Because the sentence is in canonical logical form, it is simple to translate it into SL. We
simply introduce the statement letters ‘J’, ‘A’, and ‘F’, where J = ‘John loves Andrew’,
A = ‘Andrew loves John’, and F = ‘John and Andrew will be friends’. Then, the trans-
lation into SL is

(J &∼A) ⊃ ∼F

On the other hand, this English sentence, which has the same meaning as the first, is not
written in canonical logical form.

John andAndrewwon’t be friends if John lovesAndrew butAndrewdoesn’t
love him back.

So we’ll have to say a bit more about how to translate sentences like this into SL.
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2.4 Translation from English to SL

2.4.1 Negation

In English, the word ‘not’ can show up in many places in a sentence. In order for an
English sentence to be translated into a wff of SL with a ‘∼’, it need not contain the
words ‘it is not the case that’. For instance, if we let ‘H’ stand in for the English sentence
‘Harry likes chestnuts’, then we may translate the English sentence

Harry doesn’t like chestnuts

as ‘∼H’. The reason is that ‘∼H’ is true if and only if ‘H’ is false, and ‘Harry doesn’t like
chestnuts’ is true if and only if ‘Harry likes chestnuts’ is false. So our translation has the
same meaning as the sentence we wanted to translate. Here’s a more general strategy for
translating English sentences into SL: re-write the sentences in the canonical logical form
given by the translation schema from the previous section, and check to see whether the
re-written sentence has the same meaning as the sentence that you started out with. If it
does, then you may substitute the canonical logical forms for the logical operators of SL
according to the translation schema of the previous section. If not, then you may not.

For instance, we could re-write ‘Harry doesn’t like chestnuts’ as

It is not the case that Harry likes chestnuts.

Since this contains the canonical logical form ‘it is not the case that’, we may swap this
phrase of English out for SL’s ‘∼’ to get

∼Harry likes chestnuts.

We may then use the statement letter ‘H’ to represent ‘Harry likes chestnuts’, and we will
get the SL wff

∼H

A word of warning: just because an English statement contains the word ‘not’, that does
notmean that it should be translated into a wff of SL with a ‘∼’. In order to see whether it
can, we have to see whether re-writing the statement in canonical logical form preserves
meaning. For instance, the following sentence contains the word ‘not’:

I hate not getting what I want and I hate getting what I want.
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We might attempt to translate this into canonical logical form like so,

It is not the case that I hate getting what I want, and I hate getting what I
want.

substitute ‘∼’ for ‘it is not the case that’ and ‘ & ’ for ‘and’, and get

∼ I hate getting what I want & I hate getting what I want.

If we then used ‘H’ to represent the English ‘I hate getting what I want’, we would get the
SL wff

∼H & H

However, this wff of SL is necessarily false, as the following truth-table shows

H ∼ H & H
T F T F T
F T F F F

But the sentence we started with wasn’t necessarily false. For it is possible that I both
hate not getting what I want and getting what I want. If this were possible, then I’d hate
everything, but surely it’s not a logical truth that I don’t’ hate everything. So something
went wrong. What went wrong was that ‘I hate not getting what I want’ doesn’t have
the same meaning as ‘It is not the case that I hate getting what I want’. So we must make
sure that translation into canonical logical form preserves meaning in English before we
translate that canonical logical form into SL.

2.4.2 Conjunction

Many expressions in English have subtle shades of meaning which must be lost when
we translate into SL. In particular, the following two English expressions will both have
the same SL translation:

Hannes loves peaches and he loves apples.
Hannes loves peaches but he loves apples.

The second sentence implies some kind of contrast between ‘Hannes loves peaches’ and
‘Hannes loves apples’; whereas the first sentence does not. This subtle difference in
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meaning will be lost when we translate into SL, since both of these claims are true under
exactly the same conditions: namely, the condition in which Hannes loves peaches and
apples. So, using ‘P’ to represent ‘Hannes loves peaches’ and ‘A’ to represent ‘Hannes
loves apples’, they will both be translated into SL as ‘P & A’.

All of the following expressions of English will also be translated into SL with the ‘ & ’.

p and q

p, but q

p; however, q

p, though q

p as well as q


−→ p & q

2.4.3 Disjunction

Both ‘p or q’ and ‘p unless q’ are translated into SL as ‘p ∨ q’. If you’re unhappy about
this translation, think about the following argument: ‘p unless q’ could be translated as
‘If it’s not the case that q, then p’, or: ‘∼q ⊃ p’. And this expression has the very same
meaning, in SL, as ‘p∨ q’ (they have the very same truth-table). Thus, ‘p∨ q’ translates
‘p unless q’. If you’re still unhappy about this translation, think about how you would
want to change it (think, that is, about what translation into SL you think does a better
job than p∨ q). My guess is that, if you’re unhappy with ‘p∨ q’, then you’ll probably be
more happy with ‘p ≡ ∼q’.

p or q

p unless q

 −→ p∨ q
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2.4.4 TheMaterial Conditional and Biconditional

Any of the following English expressions are appropriately translated in SL as ‘p ⊃ q’.

If p, then q

p only if q

Only if q, p

q if p

q, provided that p

q, given that p

q is true whenever p is
p is sufficient for q

q is necessary for p



−→ p ⊃ q

And any of the following are appropriately translated in SL as ‘p ≡ q’.

p if and only if q

p is necessary and sufficient for q

p is true when and only when q is true

 −→ p ≡ q

2.5 What a Truth-Table Represents

Let’s start with the notion of a truth-value assignment.

Truth-value Assignment. A truth-value assignment is an assignment of truth-
value—either true or false—to every statement letter of SL.

Suppose that we don’t wish to specify a truth-value assignment completely. That is, we
don’t wish to specify the truth-values for all of the statement letters of PL. Then, we
may choose to just provide a partial truth-value assignment. A partial truth-value
assignment merely assigns truth-values to some set of statement letters.

Partial Truth-value Assignment. A partial truth-value assignment assigns
a truth-value—either true or false—to each statement letter in some set of state-
ment letters.

For instance, a partial truth value assignment, for the set of statement letters {A, B, C},
is given by saying that A is true, B is false, and C is false.
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With these notions under our belt, we can see that the rows of a truth-table are provid-
ing us with every possible partial truth-value assignment to the statement letters appear-
ing in the wff/argument/set of wffs of PL that we’re interested in. For instance, if our
wff/argument/set of wffs of PL contains the statement letters X, Y , and Z, then our truth-
table will represent every possible partial truth-value assignment to the set of statement
letters {X, Y , Z}

Every possible
partial truth-value

assignment to
{X, Y , Z}



X Y Z

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

2.6 SL Tautologies, Contradictions, and Contingencies

Recall our definition of logical tautologies, contradictions, and contingencies:

Logical Tautology A statement A is a logical tautology iff there is no possibility in
which A is false (i.e., iff A is true in every possibility).

Logical Contradiction A statement A is a logical contradiction iff there is no
possibility in which A is true (i.e., iff A is false in every possibility).

Logical Contingency A statement A is a logical contingency iff there is some
possibility in which A is true and some possibility in which A is false.

In order to get a rigorous definition of tautologies, contradictions, and contingencies in
SL, we will simply swap out the notion of a possibility with that of a truth-value assign-
ment.

SL Tautology A wff of SL A is an sl tautology iff there is no truth-value assignment
on which A is false (i.e., iff A is true on every truth-value assignment).

SL Contradiction A wff of SL A is an sl contradiction iff there is no truth-value
assignment onwhich A is true (i.e., iff A is false on every truth-value assignment).
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SL Contingency A wff of SL A is an sl contingency iff there is some truth-value
assignment on which A is true and some truth-value assignment on which A is
false.

For instance, the following truth-table establishes that ‘A ⊃ (B ⊃ A)’ is an SL-tautology:

A B A ⊃ (B ⊃ A)
T T T T T T T
T F T T F T T
F T F T T F F
F F F T F T F

The following truth-table establishes that ‘∼ (A∨ X) & A’ is an SL-contradiction,

A X ∼ (A ∨ X) & A
T T F T T T F T
T F F T T F F T
F T F F T T F F
F F T F F F F F

And the following truth-table establishes that ‘∼(L & M) ≡ (∼L & ∼M)’ is an SL-
contingency.

L M ∼ (L & M) ≡ (∼ L & ∼ M)
T T F T T T T F T F F T
T F T T F F F F T F T F
F T T F F T F T F F F T
F F T F F F T T F T T F

2.7 SL Equivalence

Recall our definition of logical equivalence:

Logical Equivalence A pair of statements, A and B, are logically equivalent iff
A and B are true in all the same possibilities and false in all the same possibilities
(i.e., iff it is impossible for A and B to have different truth-values).

Again, in order to get a rigorous definition of equivalence in SL, we will simply swap out
the notion of a possibility with that of a truth-value assignment.
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SL Equivalence A pair of wffs of SL, A and B, are SL-equivalent iff A and B are
true in all the same truth-value assignments and false in all the same truth-value
assignments (i.e., iff there is no truth-value assignment on which A and B have
different truth-values).

For instance, if we wish to show that ‘A ⊃ B’ and ‘∼A ∨ B’ are SL equivalent, we may
simply show that they have the same truth-values in every row of their joint truth-table,
as follows:

A B A ⊃ B ∼ A ∨ B
T T T T T F T T T
T F T F F F T F F
F T F T T T F T T
F F F T F T F T F

2.8 Disjunctive Normal Form and Expressive Complete-
ness

A question to ask yourself: using only the logical operators ∼, & ,∨,⊃, and ≡, can we
write down awff corresponding to every possible column of truth-values in a truth-table
(can we write down a wff which expresses every possible truth-function)? That is: is the
set of logical operators {∼, & ,∨,⊃,≡} expressively complete? Do they allow us to say
everything we might wish to say? The answer to this question is ‘yes’. In order to prove
that this is the answer, we will have to introduce the idea of a wff written in disjunctive
normal form.

2.8.1 Disjunctive Normal Form

In order to show that we may write down a wff corresponding to any column of truth-
values using just the operators in {∼, & ,∨,⊃,≡}, we will show something stronger: that
we may write down a wff corresponding to any column of truth-values using just the
operators in {∼, & ,∨}. That is: we will show that {∼, & ,∨} is an expressively complete
set of logical operators.
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To see how we may do this, consider the following truth-function:

A B

T T F

T F T

F T F

F F T

This truth-function gives us true iff either A is true and B is false or if A and B are both
false. So if we wish to write down a wff of SL that expresses this truth-function, then we
must write down a wff of SL that is only true in the second and forth rows of this truth
table. Consider first the wff ‘A & ∼B’. This wff is true only in the second row of the truth
table.

A B A & ∼B

T T F

T F T

F T F

F F F

Next consider thewff ‘∼A & ∼B’. Thiswff is true only in the fourth rowof the truth-table.

A B ∼A & ∼B

T T F

T F F

F T F

F F T

Now, if we disjoin these two wffs, we will get a wff of SL that is true in only the second
and the fourth rows of the truth-table.

A B (A & ∼B) ∨ (∼A & ∼B)

T T F

T F T

F T F

F F T

And this is precisely the truth-function we wished to get.

The wff ‘(A & ∼B)∨ (∼A & ∼B)’ is written in disjunctive normal form. Here is a precise
definition of what it is for a wff to be in disjunctive normal form:
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A wff of SL is in disjunctive normal form iff it is a disjunction∗ of
conjunctions∗, the conjuncts∗ ofwhich are either atomic formulae or negated
atomic formulae.

In this definition, we are using the terms ‘disjunction’ and ‘conjunction’ is a slightly
more liberal sense than the way we have been using them up to this point. To flag
this, I have added asterisks to those terms to distinguish them from the stricter defi-
nitions provided earlier. The differences are these: A disjunction∗ may have only one
disjunct∗—so that, e.g., ‘(F & G)’ counts as a disjunction with just one disjunct∗. Sim-
ilarly, a conjunction∗ may have only one conjunct∗—so that, e.g., ‘A ∨ ∼A’ counts as a
disjunction of conjunction∗, since ‘A’ and ‘∼A’ both count as conjunctions∗ with only
one conjunct. Thus, ‘A’ is also in disjunctive normal form and ‘∼A’ is also in disjunctive
normal form.

Now we may show that, for any column of truth-values in any truth-table, we may con-
struct a corresponding wff of SL which has just that column of truth-values. Here’s a
simple recipe for doing so:

1. If the column of truth-values has no ‘T ’s (if it is an SL contradiction), then write
‘A & ∼A’.

2. If the column of truth-values has no ‘Fs’ (if it is an SL tautology), then write ‘A∨
∼A’.

3. If the column of truth-values has some ‘T ’s and some ‘F’s, then,

(a) for every row with a ‘T ’, write down a conjunction of (negations of) the
atomic formulae in that row.

i. If an atomic formula has the truth-value ‘T ’ in that row, then do not
negate it in the conjunction.

ii. If an atomic formulae has the truth-value ‘F’ in that row, then negate it
in the conjunction.

(b) Disjoin all the conjunctions that you wrote down in step 3(a).

For instance, consider the following truth-function:
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B C D

T T T F

T T F F

T F T F

T F F T
F T T T
F T F F

F F T T
F F F F

This truth-function is true in rows 4, 5, and 7. So we will require 3 disjuncts. In row 4,
the atomic formula B is true, the atomic formula C is false, and the atomic formulae D
is false. So we should write down the conjunction

B & (∼C & ∼D)

(Of course, the conjunction ‘(B & ∼C) & ∼D’ would have worked just as well, as would
‘∼C & (∼D & B)’.) In row 5, the atomic formula B is false, the atomic formula C is true,
and the atomic formula D is true. So we should write down the conjunction:

∼B & (C & D)

(Again, we could change the order of the conjuncts or the order of the parentheses, and
this wouldn’t matter.) Finally, in row 7, B is false, C is false, and D is true. So we should
write down the conjunction

∼B & (∼C & D)

(Again, the order of the conjuncts doesn’t matter.) Finally, we disjoin these three con-
junctions to get:

[B & (∼C & ∼D)] ∨ {[∼B & (C & D)] ∨ [∼B & (∼C & D)]}
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Now we have a wff of SL expressing the same truth-function we started with:

B C D [B & (∼C & ∼D)] ∨ {[∼B & (C & D)] ∨ [∼B & (∼C & D)]}
T T T F F F F F

T T F F F F F F

T F T F F F F F

T F F T T F F F

F T T F T T T F

F T F F F F F F

F F T F T F T T

F F F F F F F F

Note that, for any series of conjunctions, the order of the conjuncts doesn’t matter, nor
does it matter where we put the parentheses. Similarly, for any series of disjunctions,
the order of the disjuncts doesn’t matter, nor does it matter where we put the parenthe-
ses. So, we may afford ourselves the additional notational convention of omitting these
parentheses, writing the wff above as simply:

(B & ∼C & ∼D) ∨ (∼B & C & D) ∨ (∼B & ∼C & D)

There is some ambiguity in the wff above, but it is not ambiguity that affects themeaning
of the wff. Every way of disambiguating yields the same truth-function. So this is a
harmless ambiguity.

2.8.2 Expressive Completeness

We’ve shown that we can write down any truth-function using just the logical operators
∼,∨, and & . That is: we’ve shown that the set of logical operators {∼,∨, & } is expres-
sively complete. But we can show more than this. We can show that the set {∼,∨} is
expressively complete.

Here’s how: suppose that we have a wff of the form ⌜P & Q⌝. Then, replace this wff with
one of the form ⌜ ∼ (∼P ∨ ∼Q)⌝. The truth-table schema below shows that these two
wffs are SL-equivalent:
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P Q P & Q ∼ (∼P ∨ ∼Q)

T T T T F F F

T F F F F T T

F T F F T T F

F F F F T T T

Now, we can go through any wff in disjunctive normal form and replace any subformula
of the form ⌜P & Q⌝ with an SL-equivalent subformula which utilizes only ⌜P⌝, ⌜Q⌝,
‘∼’, and ‘∨’. If we do this for every subformula in the wff, then we will have removed all
of the ‘&’s. And if we can do this for every wff in disjunctive normal form, then we can
express every truth-function using just ∼ and ∨. So, if we can do this, then {∼,∨}must
be expressively complete.

For instance, consider the following wff, which is in disjunctive normal form:

(R & S ) ∨ (∼R & ∼S )

In this, there are two subformulae whosemain operators are ‘&’: ‘R & S ’ and ‘∼R & ∼S ’.
The above schema tells us that we may replace ‘R & S ’ with ‘∼ (∼R ∨ ∼S )’, and that we
may replace ‘∼R & ∼S ’ with ‘∼ (∼ ∼R∨ ∼ ∼S )’, and we will get something which is
SL-equivalent to the thing that we started out with. So

∼(∼R & ∼S )∨ ∼ (∼ ∼R∨ ∼ ∼S )

is SL-equivalent to (R & S ) ∨ (∼R & ∼S ). And this wff utilizes only the logical opera-
tors ∼ and ∨.

The schema above assures us that we may do this for any wff in disjunctive normal
form. Andwe know that, for any truth-function, there is somewff in disjunctive normal
form which expresses that truth-function. So we know that we may express any truth-
function using just the operators ∼ and ∨. So {∼,∨} is an expressively complete set of
operators.

Wemay also show that {∼, &} is an expressively complete set of operators (you’ll be asked
to show this in the in class exercise for today.

The Scheffer Stroke

Is there a single logical operator that is expressively complete, all by itself? The answer
is ‘yes’. Actually, there’s more than one. The logical operator ‘ | ’, known as the ‘Schef-
fer stroke’, and the logical operator ‘↓’, known as ‘Pierce’s arrow’, are both expressively
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complete. These logical operators are defined by the following truth-tables:

P Q P | Q

T T F

T F T

F T T

F F T

P Q P ↓ Q

T T F

T F F

F T F

F F T

We already know that {∼,∨} is expressively complete (from the in class exercise). From
this, we can show that { | } is expressively complete by showing how to replace every wff
of the form ⌜∼P⌝ with an SL-equivalent wffwhich utilizes only ⌜P⌝ and ‘ | ’, and showing
how to replace every wff of the form ⌜P&Q⌝ with an SL-equivalent wff which utilizes
only ⌜P⌝, ⌜Q⌝, and ‘ | ’. This is accomplished by the following truth-table schemas.

P ∼P P | P

T F F

F T T

P Q P & Q (P | Q) | (P | Q)

T T T F T F

T F F T F T

F T F T F T

F F F T F T

This shows that { | } is expressively complete. On your problem set, you’ll be asked to
show that {↓} is expressively complete as well.

2.9 SL-Validity and SL-Invalidity

To begin with, a bit of new notation: If we have an argument from the premises P, Q, R
to the conclusion S, then, rather than writing this as we have been, like so

P
Q
R

S



2.9. SL-Validity and SL-Invalidity 31

we will denote the argument by putting single forward slashes between premises, and
putting a double forward slash between the premises and the conclusion, like so:

P / Q / R // S

If we have a collection of wffs of SL, one of which is designated the conclusion, the others
of which are designated premises, then we have what we will call a ‘SL-argument’.

A SL-argument is a collection of wffs of SL, one of which is designated the
conclusion, and the others of which are designated the premises.

Recall the definition of deductive validity. An argument is deductively valid if and
only if there is no possibility in which all of the premises are true but the conclusion is
false. Equivalently: an argument is deductively valid if and only if every possibility in
which the premises of the argument are all true is a possibility in which the conclusion
is true also. To model deductive validity in the language SL, we will give a definition
of validity within the language SL—what we will call ‘SL-validity’—which is just the
same as the definition of deductive validity, except with a formal substitution for the
notion of a possibility. The substitution we will make is this: for ‘possibility’, we will
substitute ‘truth-value assignment’.

A SL-argument is SL-valid if and only if there is no truth-value assignment
in which all of the premises are true and the conclusion is false.

Because the truth-values of the wffs of SL appearing in a SL-argument are determined
entirely by the statement letters appearing in those wffs, we need not consider every
truth-value assignment. Rather, it will be enough to look at all the partial truth-value
assignments to those statement letters appearing in the SL-argument. Each such partial
truth-value assignment corresponds to a row of the truth-table for the SL-argument. So,
another, equivalent, definition of SL-validity is this:

A SL-argument is SL-valid if and only if, in the argument’s truth-table, there
is no row in which the premises of the argument are all true and the conclu-
sion is false.

So, for instance, suppose we wish to determine whether the following SL-argument is
SL-valid:

∼ (P & Q) / P // ∼Q
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To check, we first construct the truth-table for the argument.

P Q

T T

T F

F T

F F

Next, we place the argument’s premise in one column, and the argument’s conclusion in
another, like so, and, underneath each of the statement letters, we copy over the truth-
values from the first two columns:

P Q ∼ (P & Q) P ∼ Q

T T T T T T

T F T F T T

F T F T F F

F F F F F F

(Here, I’ve placed two vertical lines between the premise and the conclusion just to in-
dicate that the conclusion is the thing to the right of those double vertical lines.)

We then finish up by, in the case of the argument’s premise ‘∼ (P & Q)’, determining the
appropriate column of truth values beneath (P & Q), and then determining the appro-
priate column of truth values beneath ∼ (P & Q). For the argument’s conclusion, ∼Q,
we determine the appropriate column of truth-values beneath ∼Q. When we’re done,
we place a box around the columns beneath the premises’ and the conclusion’s main
operators.

P Q ∼ (P & Q) P ∼ Q
T T F T T T T F T
T F T T F F T T F
F T T F F T F F T
F F T F F F F T F

Now, in order to decide whether the argument is SL-valid or SL-invalid, we need to de-
termine whether every row in which the premise is true is a row in which the conclusion
is true also. The first premise is true in rows 2–4, and the second premise is true in rows
1 and 2. Therefore, both premises are only true in row 2:
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P Q ∼ (P & Q) P ∼ Q
T T F T T T T F T
T F T T F F T T F
F T T F F T F F T
F F T F F F F T F

And, in row 2, the conclusion is true also. So, there is no row of the truth-table in which
the premises are all true yet the conclusion is false. So, the SL-argument

∼ (P & Q) / P // ∼Q

is SL-valid.

A SL-argument is SL-invalid if and only if it is not SL-valid. Thus:

A SL-argument is SL-invalid if and only if there is some truth-value as-
signment on which all of the argument’s premises true yet its conclusion is
false.

Or, equivalently:

A SL-argument is SL-invalid if and only if there is some row of its truth-
table in which all of the premises are true and in which the conclusion is
false.

Suppose that we want to show that the following SL-argument is SL-invalid:

A ⊃ C / ∼A // ∼C

Then, we may construct the truth-table for this SL-argument. We will arrive at the fol-
lowing:

A C A ⊃ C ∼ A ∼ C
T T T T T F T F T
T F T F F F T T F
F T F T T T F F T
F F F T F T F T F

Both of the premises are true in rows 3 and 4 of the truth-table. So we restrict our
attention to those rows. If the conclusion is also true in both of those rows of the truth
table, then the argument is SL-valid. If, however, the conclusion is false in one of those
rows of the truth-table, then the argument is SL-invalid.
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A C A ⊃ C ∼ A ∼ C
T T T T T F T F T
T F T F F F T T F
F T F T T T F F T
F F F T F T F T F

Look, however, at the third row of the truth-table. On this row of the truth-table, the
premises of the argument are true, yet its conclusion is false. So the argument is SL-
invalid.

Just as we saw with deductive validity and deductive invalidity, we can give an equiv-
alent definition of SL-validity and SL-invalidity by introducing the notion of a SL-
counterexample.

A SL-counterexample to the SL-validity of a SL-argument is a truth-value
assignment on which the premises of the argument are all true, yet the con-
clusion is false.

Alternatively:

A SL-counterexample to the SL-validity of a SL-argument is a row of the
argument’s truth table in which all of the premises are true and the conclu-
sion is false.

Now, a SL-argument is SL-valid if and only if it has no SL-counterexample.

A SL-argument is SL-valid if and only if it has no SL-counterexample.

And, thus, a SL-argument is SL-invalid if and only if it has a SL-counterexample.

A SL-argument is SL-invalid if and only if it has a SL-counterexample.

For instance, the SL-argument

A ⊃ C / ∼A // ∼C

considered above has the following SL-counterexample:

A is false and C is true
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(This is the assignment of truth-values to A and C which corresponds to the third row
the truth-table above.)

2.10 SL-Validity and SL-Tautologies

The SL-argument
∼ (P & Q) / P // ∼Q

is SL-valid, as we saw above. Note also that the wff

(∼(P & Q) & P) ⊃ ∼Q

is an SL-tautology:

P Q (∼ (P & Q) & P) ⊃ ∼ Q
T T F T T T F T T F T
T T T T F F T T T T F
T T T F F T F F T F T
T T T F F F F F T T F

This isn’t an accident. In general, an SL-argument ⌜P1 / P2 / . . . / PN // C⌝ is SL-
valid if and only if the material conditional ⌜(P1 & P2 & . . . & PN) ⊃ C⌝ is an SL-
tautology. (Here, I’ve omitted the parentheses around the conjuncts of the antecedent
since it doesn’t matter how we group together the conjuncts; it won’t change the truth-
function they determine.)

The SL-argument
P1 / P2 / . . . / PN // C

is SL-valid if and only if

(P1 & P2 & . . . & PN) ⊃ C

is an SL-tautology.

To see why, think about the circumstances in which an argument is SL-valid. It is SL-
valid iff, in every row of the argument’s truth table in which the premises are all true,
the conclusion is true also. It doesn’t matter whether the conclusion is true when some,
but not all of the premises are true. The only rows of the truth table we have to con-
sider are those in which all of the premises are true. But the rows of the truth-table
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in which all of the premises are true are just those rows of the truth table in which
the conjunction of all of the premises, ⌜P1 & P2 & . . . & PN)⌝ is true. In any row of
the truth table in which not all of the premises are true, this conjunction is false, and
therefore, the material conditional ⌜(P1 & P2 & . . . & PN) ⊃ C⌝ is automatically true
(since a material conditional is true whenever its antecedent is false). In those rows
of the truth-table in which all of the premises are true, the conjunction of all of the
premises ⌜P1 & P2 & . . . & PN)⌝ will be true also. If the conclusion ⌜C⌝ is true in
all of these rows, then the material conditional ⌜(P1 & P2 & . . . & PN) ⊃ C⌝ will be
true in those rows as well. So, if ⌜C⌝ is true in every row that the premises are all
true, then ⌜(P1 & P2 & . . . & PN) ⊃ C⌝ will be true in every row or its truth-table. So
⌜(P1 & P2 & . . . & PN) ⊃ C⌝ will be a tautology.

If, on the other hand, the SL argument ⌜P1 / P2 / . . . / PN // C⌝ is invalid, then there
will be some row of its truth table in which all of the premises are true, yet the conclusion
is false. But then there will be some row of the truth-table for ⌜(P1 & P2 & . . . & PN) ⊃
C⌝ in which the conjunction ⌜P1 & P2 & . . . & PN)⌝ is true yet ⌜C⌝ is false. So there
will be some row of the truth table in which ⌜(P1 & P2 & . . . & PN) ⊃ C⌝ is false. So
⌜(P1 & P2 & . . . & PN) ⊃ C⌝ will not be an SL-tautology.

2.11 SL-Consistency& SL-Inconsistency

Suppose that we’ve got an arbitrary set of wffs of SL. For instance, suppose that we’ve
got the following set: 

A ⊃ ∼B

B ⊃ A

B


This set contains three wffs of SL: first, ‘A ⊃ ∼B’, second, ‘B ⊃ A’, and third, ‘B’.

For an arbitrary set of wffs of SL like this, it could either be the case that:

1. There is some truth-value assignment on which every wff in the set is true; or

2. There is no truth-value assignment on which every wff in the set is true.

In case (1), there’s some way of assigning truth-values to the statement letters of SL such
that you can make every wff in the set true at once. In that case, we say that the set of
wffs of SL is SL-consistent.

A set of wffs of SL is SL-consistent if and only if there is some truth-value
assignment on which all of the wffs are true.
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Or, equivalently,

A set of wffs of SL is SL-consistent if and only if there is some row of their
joint truth table in which all of the wffs are true.

For instance, consider the following set of wffs of SL:
A∨ B

∼B & A

A ⊃ ∼B


When we construct their joint truth-table, we find:

A B A ∨ B ∼ B & A A ⊃ ∼ B
T T T T T F T F T T F F T
T F T T F T F T T T T T F
F T F T T F T F F F T F T
F F F F F T F F F F T T F

Each of these three wffs of SL are true on line 2 of the truth-table. So, this set of wffs is
SL-consistent. They are capable of all three being true on the very same (partial) truth-
value assignment—namely, the partial truth-value assignment ‘A is true and B is false’.

A set of wffs of SL is SL-inconsistent if and only if there is no truth-value assignment
which makes all of them true at once.

A set of wffs of SL is SL-inconsistent if and only if there is no truth-value
assignment on which all of the wffs are true (i.e., if and only if, on every
truth-value assignment, at least one of the wffs in the set is false).

Or, equivalently,

A set of wffs of SL is SL-inconsistent if and only if there is no row of their
joint truth table in which all of the wffs are true (i.e., if and only if, in every
row of their truth table, at least one of the wffs in the set is false).
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Logical Property Applies Only To
SL-Validity SL-Arguments
SL-Invalidity SL-Arguments
SL-Tautology individual wffs of SL
SL-Self-Contradiction individual wffs of SL
SL-Contingency individual wffs of SL
SL-Equivalent pairs of wffs of SL
SL-Consistent sets of wffs of SL
SL-Inconsistent sets of wffs of SL

Figure 2.1: : The logical properties of SL and the kinds of entities to which they apply.

For instance, consider the set of wffs with which we began this section:
A ⊃ ∼B

B ⊃ A

B


The joint truth-table for these three wffs of SL is shown below:

A B A ⊃ ∼ B B ⊃ A B
T T T F F T T T T T
T F T T T F F T T F
F T F T F T T F F T
F F F T T F F T F F

In the first row of the truth-table, A ⊃ ∼B is false; in the second row of the truth-table,
B is false; in the third row of the truth-table, B ⊃ A is false; and in the fourth row of the
truth-table, B is false. So one of the three wffs is false in every row of their truth-table.
So, there’s no row of their truth-table on which they are all true. So this set of wffs is
SL-inconsistent.

2.12 SL-Consistency and the Other Logical Properties of
SL

The first three logical properties we encountered—SL-tautology, SL-self-contradiction,
and SL-contingency—applied to individual wffs of SL. The next logical property—SL-
equivalence—applied to pairs of wffs of SL. The next two logical properties—SL-validity
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and SL-invalidity— applied to arguments of SL. The final two logical properties—SL-
consistency and SL-inconsistency—apply to arbitrary sets of wffs of SL.

It’s important to keep in mind the kinds of entities to which these logical properties
apply. I have summarized this information for you in figure 6.4. You should resist any
urge to say, for instance, that an individual wff of SL is ‘SL-valid’, or that an argument
of SL is a SL-tautology. These claims would be false; for, given the definitions provided
here, only SL-arguments can have the property being SL-valid, and only individual wffs
of SL can be SL-tautologies.

Nevertheless, we can say some interesting things about how the 4 families of logical
properties displayed in figure 6.4 are related to one another. Thinking through some
of these relationships can bring us to a deeper understanding of what these properties
amount to. In fact, there is a rather deep relationship between these four families of
properties—given any one of these families of properties, we can define all the rest of the
properties in terms of them.

I won’t show this for all of the families of properties (though you should think through,
for yourself, how to show it); but it will be instructive to walk through how to reduce all
of the other logical properties we’ve learned about to the notions of SL-consistency and
SL-inconsistency.

To being with, we can define the notion of an SL tautology in terms of SL-consistency,
as follows:

A wff of SL ⌜P⌝ is an SL-tautology if and only if the set {∼P} is SL-
inconsistent.

To see why this is so, think about the circumstances in which ⌜P⌝ is an SL-tautology.
It is an SL-tautology iff it is true in every row of its truth-table. But, if ⌜P⌝ is true in
every row of its truth-table, then ⌜∼P⌝ will be false in every row of its truth-table. But
if ⌜∼P⌝ is false in every row of its truth-table, then there will be no row on which all
of the members of the set {∼P} are true—since {∼P} has only one member, that means
that there is no row of the truth table on which that one member is true. So, if ⌜P⌝ is an
SL-tautology, then {∼P} will be SL-inconsistent. And, if {∼P} is SL-inconsistent, then
there’s no row of the truth-table on which ⌜∼P⌝ is true. But then, by the definition of
‘∼’, then will be no row of the truth-table on which ⌜P⌝ is false. So ⌜P⌝ will be true in
every row of its truth-table. So ⌜P⌝ will be an SL-tautology.

We can similarly define the notion of an SL-contradiction in terms of inconsistency by
saying that ⌜P⌝ is an SL-contradiction iff the set {P} is SL-inconsistent.
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A wff of SL ⌜P⌝ is an SL-contradiction if and only if the set {P} is SL-
inconsistent.

For, ⌜P⌝ is an SL-contradiction iff it is false in every row of its truth table, which is so
iff there’s no row of the truth-table on which every member of {P} is true.

Finally, we can define the notion of an SL-contingency in terms of SL-consistency, as
follows:

A wff of SL ⌜P⌝ is an SL-contingency if and only if both {P} and {∼P} are
SL-consistent.

For, if and only if {P} is SL-consistent, there’s some row of the truth-table on which P
is true, and if and only if {∼P} is SL-consistent, there’s some row of the truth-table on
which P is false. So there’s some row of the truth-table on which ⌜P⌝ is true and some
row on which it is false. So it’s an SL-contingency.

We can go on to talk about the notion of SL-equivalence by noting that, if ⌜P⌝ and ⌜Q⌝
are SL-equivalent, then there’s no row of the truth-table on which ⌜P⌝ is true and ⌜Q⌝
is false, and there’s no row of the truth-table on which ⌜P⌝ is false and ⌜Q⌝ is true. So
every row of the truth-table is one on which either both ⌜P⌝ and ⌜Q⌝ are true or both
⌜P⌝ and ⌜Q⌝ are false. But those are exactly the circumstances in which ⌜P ≡ Q⌝ is
true. So ⌜P⌝ and ⌜Q⌝ are SL-equivalent iff ⌜P ≡ Q⌝ is true in every row of its truth-
table—that is to say, iff ⌜P ≡ Q⌝ is an SL-tautology. But we already know how to make
sense of SL-tautologies in terms of inconsistency. So we can say:

⌜P⌝ and ⌜Q⌝ are SL-equivalent iff {∼(P ≡ Q)} is SL-inconsistent.

Finally, we can make sense of the notion of SL-validity in terms of SL-consistency by
noting that an argument of SL, ⌜P1 / P2 / . . . / PN // C⌝ is SL-valid if and only if
there’s no row of the truth-table on which ⌜P⌝1, ⌜P⌝2, . . . , and ⌜P⌝N are all true yet ⌜C⌝
is false. Since ⌜C⌝ is false iff ⌜∼C⌝ is true, we can re-write this as follows: there is no
row of the truth table on which ⌜P⌝1, ⌜P⌝2, . . . , ⌜P⌝N , and ⌜∼C⌝ are all true. But that’s so
iff the set {P1, P2, . . . , PN ,∼C} is SL-inconsistent. Thus:

⌜P1 / P2 / . . . / PN // C⌝ is SL-valid iff {P1, P2, . . . , PN ,∼C} is SL-
inconsistent.

And since an argument is SL-invalid iff there’s some row of the truth-table on which all
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of the premises are true yet the conclusion is false, an argument is SL-invalid iff there’s
some row of the truth-table on which ⌜P⌝1, ⌜P⌝2, . . . , ⌜P⌝N , and ⌜∼C⌝ are all true. Thus:

⌜P1 / P2 / . . . / PN // C⌝ is SL-invalid iff {P1, P2, . . . , PN ,∼C} is SL-
consistent.



Chapter 3

Sentence Logic Trees

3.1 Truth Trees: The Basics

Today, we’re going to learn about a procedure for testing the consistency of sets of wffs of
SL. Because we may define all of the other logical notions of SL in terms of consistency
(as we saw last time), this will allow us to test whether wffs of SL are SL-tautologies,
SL-contingencies, or SL-contradictions; it will allow us to test whether pairs of wffs of
SL are SL-equivalent; and it will allow us to test whether an SL-argument is SL-valid or
SL-invalid.

In broad outline, here’s how the procedure is going to work: we’re going to start by plac-
ing all of the wffs we’re interested in in a vertical stack. If, for instance, we’re interested
in the set of wffs {A∨ ∼B,∼A, B}, then we will begin with the following stack of wffs:

A∨ ∼B
∼A
B

These wffs form the trunk of a tree. Once we’ve written down the wffs on the trunk,
we will begin by applying the relevant tree rules to those wffs on the tree which are not
atomic or negations of atomic formulae. For instance, in the set of wffs above, ∼A is
the negation of an atomic sentence, so we need not apply any rule to it; B is an atomic
sentence, so we need not apply any rule to it. ‘A ∨ ∼B’ isn’t an atomic sentence, so we
will need to apply a rule to it. For each wff which is neither atomic nor a negation of an
atomic wff, there is one unique rule for that wff. This rule is determined by the syntactic
structure of the wff we’re considering. For instance, with ‘A ∨ ∼B’, the main operator is
the wedge, ∨, so we will use the rule associated with the wedge, which is:

42
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(∨)

P∨Q ✓

P Q

Here’s how to read this rule: it says that, if you have a wff of the form ⌜P∨Q⌝ appearing
at some point in the tree, then you may place a check next to that wff; when you do so,
you must, on every open branch of the tree below that wff, create two new branches.
On one of those branches, you must write ⌜P⌝; on the other branch, you must write
⌜Q⌝. Once you have done this for every open branch beneath the wff ⌜P∨Q⌝, you are
finished with that wff. The checkmark reminds you that you have already applied the
relevant rule to that wff; and, once a rule has been applied to a wff once, it cannot be
applied to that wff again.

So, for instance, in the tree we started above, when we apply the rule (∨) to ‘A∨∼B, we
get the following tree:

A∨ ∼B ✓
∼A
B

A ∼B

Before, when I was explaining the rule (∨), I used the notion of an open branch. The
tree above now has two branches: the one going off to the left and ending in ‘A’, and the
one going off to the right and ending in ‘∼B’. On the first branch, the wffs ‘A∨∼B’, ‘∼A’,
‘B’, and ‘A’ appear. On the second branch, the wffs ‘A ∨ ∼B’, ‘∼A’, ‘B’, and ‘∼B’ appear.
Note that the wffs on the trunk of the tree appear on both branches.

In order to explain what Imean by an open branch of the tree, let me introduce onemore
rule:

(×)

P

∼P
×

This rule says that, anytime youhave awffof the form ⌜P⌝ and awffof the form ⌜∼P⌝ ap-
pearing on the same branch of the tree–that is, any time you have a formula and its nega-
tion appearing on the same branch of the tree—you should mark an ‘×’ at the bottom
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of that branch. When you do so, that branch of the tree has closed. Once a branch has
closed, it may no longer be extended. The rules only allow us to extend open branches.
A branch is open iff it is not closed.

On the tree above, the first branch has both the wff ‘∼A’ and the wff ‘A’. So, the rule
(×) tells us that we must close this branch by writing ‘×’ at the bottom of the branch, as
follows:

A∨ ∼B ✓
∼A
B

A
×

∼B

Similarly, the second branch has both the wff ‘B’ and the wff ‘∼B’. So, the rule (×) tells
us that we must close this branch, too.

A∨ ∼B ✓
∼A
B

A
×

∼B
×

Now, all branches have closed. If all the branches of a tree have closed, then you are done
with that tree, and we say that the tree closes. There is one other way to finish a tree. If
you have checked off and applied all of the relevant rules to the wffs appearing on the
open branches of that tree which are not atomic wffs or negations of atomic wffs, then
you are done with that tree. If, after having applied all of those rules, at least one branch
of the tree remains open, then we say that the tree does not close, or that the tree remains
open.
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To complete a tree:

1. Apply the relevant rules to all wffs appearing on open branches, in any
order you like.

2. If a wff ⌜P⌝ and its negation ⌜∼P⌝ appear on the same branch, then
close that branch by writing ‘×’ at the bottom of the branch.

3. If every branch closes, then you are done; in this case, we say that the
tree closes.

4. If you have applied every relevant rule to every wff on every open
branch which is not atomic or the negation of an atomic wff, then you
are done; if, after doing this, there remains an open branch, then we
say that the tree remains open.

3.2 Rules for Truth Trees

There are ten rules for truth trees. We have already learned about (∨), for wffs of the
form ⌜P∨Q⌝. Next is the rule for wffs of the form ⌜P & Q⌝.

(&)

P & Q ✓

P
Q

This rule says that, if you have a wff of the form ⌜P & Q⌝ appearing on an open branch,
then you may place a check next to that wff; when you do so, you must, on every open
branch of the tree on which the wff ⌜P & Q⌝ appears, write ⌜P⌝ and, immediately be-
neath it, ⌜Q⌝.

For instance, suppose that we begin with the following wff at the trunk of the tree:

A∨ (B & ∼B)

There is one wff in this tree, so wemust apply the rule (∨) to it—since it is a disjunction.
When we do so, we get:
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A∨ (B & ∼B) ✓

A B & ∼B

Now we must apply the rule (&) to the wff ‘B & ∼B’—since this is a wff of the form
⌜P & Q⌝. When we do so, we get:

A∨ (B & ∼B) ✓

A B & ∼B ✓

B
∼B

Since both ‘B’ and ‘∼B’ appear on the second branch of the tree, we must, by rule (×),
close this branch.

A∨ (B & ∼B) ✓

A B & ∼B ✓

B
∼B
×

Note that, when I applied the rule (&), I only wrote B and ∼B to the branch on the left.
I didn’t, for instance, do this:

A∨ (B & ∼B) ✓

A

MISTAKE!!! B
∼B
×

B & ∼B ✓

B
∼B
×

Why not? Because the rule (&) says that you should only write ⌜P⌝ and ⌜Q⌝ to the end
of those branches on which the wff ⌜P & Q⌝ appears. But ‘B & ∼B’ does not appear on
the first branch. So you should not write ‘B’ and ‘∼B’ on that branch.

Once we have applied the rule (∨) to the wff ‘A∨ (B & ∼B)’ and the rule (&) to the wff
‘B & ∼B’, there is only the atomic formula ‘A’ left on the first branch of the tree. So there
are no more rules to be applied. So we are done with the tree, and the first branch has
remained open. To indicate this, we may write a circle, ‘#’ at the end of that branch.
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A∨ (B & ∼B) ✓

A
#

B & ∼B ✓

B
∼B
×

This tells us that the tree has remained open.

The next rule is for wffs of the form ⌜P ⊃ Q⌝,

(⊃)

P ⊃ Q ✓

∼P Q

This rule tells us that, if we have a wff of the form ⌜P ⊃ Q⌝ on an open branch of the
tree, then, we may place a checkmark next to this wff and split every open branch on
which that wff lies in two. On the left-hand-side of this split, we should write ⌜∼P⌝, and
on the right-hand-side, we should write ⌜Q⌝.

For instance, suppose that we have a tree with the following trunk:

(A ⊃ B) & (B ⊃ C)

A
∼C

Then, because the first wff is of the form ⌜P & Q⌝, we may apply rule (&) to get:

(A ⊃ B) & (B ⊃ C) ✓
A
∼C

A ⊃ B
B ⊃ C

Next, we have two wffs of the form ⌜P ⊃ Q⌝. We may start with either we wish. I will
start with ‘B ⊃ C’. Applying the rule (⊃), we get:
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(A ⊃ B) & (B ⊃ C) ✓
A
∼C

A ⊃ B
B ⊃ C ✓

∼B C
×

Because the far right branch has both ‘∼C’ and ‘C’ appearing on it, rule (×) tells us that
we must close this branch. Because there are open branches and unchecked wffs which
are neither atomic nor negations of atomic formulae, we are not yet finished with the
tree. We must apply the rule (⊃) to ‘A ⊃ B’. When we do so, we get:

(A ⊃ B) & (B ⊃ C) ✓
A
∼C

A ⊃ B ✓
B ⊃ C ✓

∼B

∼A
×

B
×

C
×

On the left-most branch, both ‘A’ and ‘∼A’ appear, so that branch closes. Similarly, on
the adjacent branch, both ‘B’ and ‘∼B’ appear, so that branch closes as well. Now, every
branch has closed, so the tree closes, and we are done.

The next rule tells us what to do with wffs of the form ⌜P ≡ Q⌝.

(≡)

P ≡ Q ✓

P
Q

∼P
∼Q

This rule says: if you have a wff of the form ⌜P ≡ Q⌝ on an open branch of the tree, then,
wemay place a checkmark next to this wff and split every open branch onwhich that wff
lies in two. On the left-hand-side of this split, we should write ⌜P⌝ and, immediately
underneath it, ⌜Q⌝; on the right-hand-side, we should write ⌜∼P⌝ and, immediately
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underneath it, ⌜∼Q⌝.

For instance, here is a completed tree for the initial trunk consisting of the wffs ‘P ≡ Q’
and ‘P & ∼Q’:

P ≡ Q ✓
P & ∼Q ✓

P
Q

P
∼Q
×

∼P
∼Q

P
∼Q
×

Since every branch of this tree closes, the tree closes.

Negations

The remaining rules apply to negations—wffs whose main operators are the tilde, ‘∼’.
There is not just one such rule, but rather five—one for each logical operator. In order to
know which rule to apply to a negation, we must know the logical form of its immediate
subformula(e). A negated conjunction, for instance, has a different rule than a negation
disjunction, which has a different rule than a negated conditional.

The first negation rule governs negations of negations. Ittells us that, if we have a wff of
the form ⌜ ∼ ∼P⌝, then we may check this wff off and write one of the form ⌜P⌝ on
every open branch on which ⌜ ∼ ∼P⌝ lies.

(∼∼)

∼∼P ✓

P

For instance, consider the tree which starts with ‘∼ ∼(P∨ Q)’ and ‘∼P’:

∼ ∼(P∨ Q) ✓
∼P

P∨ Q ✓

P
×

Q
#
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This tree has an open branch after checking off all wffs which are not atomic formulae
or negations of atomic formulae. So the tree remains open.

The next negation rule governs negations of disjunctions. It says that, if you have a wff
of the form ⌜∼(P ∨Q)⌝ on an open branch, then you may place a check next to that
wff; when you do so, you must write, at the bottom of every open branch on which
⌜∼(P∨Q)⌝ lies, write ⌜∼P⌝ and, immediately beneath it, ⌜∼Q⌝.

(∼∨)

∼(P∨Q) ✓

∼P
∼Q

Here, for instance, is the tree beginning with the sole wff ‘∼(∼(H ∨ K) ∨ ∼(H & K))’:

∼(∼(H ∨ K) ∨ ∼(H & K)) ✓

∼ ∼(H ∨ K) ✓
∼ ∼(H & K) ✓

H ∨ K ✓

H & K ✓

H

H
K
#

K

H
K
#

At least one branch of the tree has remained open, so the tree is open.

The next rule governs negations of conjunctions. It says that, if you have a wff of the
form ⌜∼(P&Q)⌝ on an open branch, then you may place a check next to that wff; when
you do so, youmust split every open branch onwhich ⌜∼(P&Q)⌝ lies; on the left-hand-
side of the split, you must write ⌜∼P⌝ and on the right-hand-side of the split, you must
write ⌜∼Q⌝.
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(∼&)

∼(P & Q) ✓

∼P ∼Q

For instance, here is the tree which begins with the wff ‘∼((L ∨ K) & (K ≡ L))’:

∼((L ∨ K) & (K & L)) ✓

∼(L ∨ K) ✓

∼L
∼K
#

∼(K & L) ✓

∼K
#

∼L
#

Because there is a branch of this tree which remains open, the tree is open.

The next rule governs negations of conditionals. It says that, if you have a wff of the form
⌜∼(P ⊃ Q)⌝ on an open branch, then you may place a check next to that wff; when you
do so, you must write, at the bottom of every open branch on which ⌜∼(P ⊃ Q)⌝ lies,
⌜P⌝ and, immediately beneath it, ⌜∼Q⌝.

(∼ ⊃)

∼(P ⊃ Q) ✓

P
∼Q

For instance, consider the tree which begins with the wffs ‘∼(A ⊃ (B ⊃ C))’ and ‘C’:

∼(A ⊃ (B ⊃ C)) ✓
C

A
∼(B ⊃ C) ✓

B
∼C
×

Because every branch of the tree closes, the tree closes.
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The final rule governs negations of biconditionals. It says that, if you have a wff of the
form ⌜∼(P ≡ Q)⌝ on an open branch, then you may place a check next to that wff;
when you do so, you must split every open branch on which ⌜∼(P ≡ Q)⌝ lies; on the
left-hand-side of the split, you must write ⌜P⌝ and, immediately beneath it, ⌜∼Q⌝; on
the right-hand-side of the split, you must write ⌜∼P⌝ and, immediately beneath it, ⌜Q⌝.

(∼ ≡)

∼(P ≡ Q) ✓

P
∼Q

∼P
Q

Consider, for instance, the following tree, which begins with the wff ‘∼((E ≡ F) ≡ (F ≡
E))’:

∼((E ≡ F) ≡ (F ≡ E)) ✓

E ≡ F ✓
∼(F ≡ E) ✓

E
F

F
∼E
×

∼F
E
×

∼E
∼F

F
∼E
×

∼F
E
×

∼(E ≡ F) ✓
F ≡ E ✓

E
∼F

F
E
×

∼F
∼E
×

∼E
F

F
E
×

∼F
∼E
×

Because every branch of the tree closes, the tree closes.
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3.3 Summary of Rules

(∨)

P∨Q ✓

P Q

(&)

P & Q ✓

P
Q

(⊃)

P ⊃ Q ✓

∼P Q

(≡)

P ≡ Q ✓

P
Q

∼P
∼Q

(∼∼)

∼∼P ✓

P

(∼∨)

∼(P∨Q) ✓

∼P
∼Q

(∼&)

∼(P & Q) ✓

∼P ∼Q

(∼ ⊃)

∼(P ⊃ Q) ✓

P
∼Q

(∼ ≡)

∼(P ≡ Q) ✓

P
∼Q

∼P
Q

(×)

P

∼P
×
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3.4 Strategies for Applying Rules

We may apply rules in any order; and, consequently, there are multiple correct trees for
any given trunk. For instance, consider a tree which begins with the wffs ‘A ≡ (B∨C)’,
‘∼(B ⊃ C)’, and ‘A ⊃ C’. Here is one possible completed tree:

A ≡ (B∨C) ✓
∼(B ⊃ C) ✓

A ⊃ C ✓

A
B∨C ✓

B

∼A
×

C

B
∼C
×

C

∼A
×

C

B
∼C
×

∼A
∼(B∨C) ✓

B
∼C

B
∼C
×

(In this tree, I began by first applying the rule (≡) to ‘A ≡ (B ∨C)’. I next applied the
rule (∨) to ‘B∨C’ on the first branch, and the rule (∼ ∨) to ‘∼(B∨C)’ on the second
branch. After that, I applied the rule (⊃) to ‘A ⊃ C’ to all the open branches beneath it;
and finally, I applied the rule (∼⊃) to ‘∼(B ⊃ C)’.)

Here is another way of completing the tree:

A ≡ (B∨C) ✓
∼(B ⊃ C) ✓

A ⊃ C ✓

B
∼C

∼A

A
B∨C
×

∼A
∼(B∨C) ✓

∼B
∼C
×

C
×



3.5. ST-Consistency 55

This tree is much simpler than the one we began with. In general, your choice about
which order to apply the rules can end up making a difference to how long it takes a tree
to close or how complicated your final tree ends up looking. Here are some rough-and-
ready guidelines to follow to keep your trees as tidy as possible:

1. All else being equal, apply non-branching rules first.

2. All else being equal, apply the rules towffswhichwill lead to at least somebranches
closing before applying the rules to wffs which will not.

3. All else being equal, work on longer wffs first.

3.5 ST-Consistency

Suppose that you begin a tree with a set of wffs of SL, {A1, A2, . . . , AN}, at the top, you
apply the rules, and every branch of the tree closes (i.e., the tree closes). Then, the set of
sentences {A1, A2, . . . , AN} is ST -inconsistent.

A1

A2

...

AN

× × × × × × ×

⇐⇒ {A1, A2, . . . , AN} is ST -inconsistent

Suppose, on the other hand, that youbegin a treewith a set ofwffs ofSL, {A1, A2, . . . , AN},
at the top, you apply the rules, and not every branch of the tree closes—at least one
branch remains open (i.e., the treedoesn’t close). Then, the set of sentences {A1, A2, . . . , AN}
is ST -consistent.

A1

A2

...

AN

×# × × × × ×

⇐⇒ {A1, A2, . . . , AN} is ST -consistent

Is the set {A ≡ B, B ⊃ C, A,∼(A & C)} ST -consistent?
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A ≡ B ✓
B ⊃ C ✓

A
∼(A & C) ✓

A
B

∼B
×

C

∼A
×

∼C
×

∼A
∼B
×

Because the tree closes, {A ≡ B, B ⊃ C, A,∼(A & C)} is ST -inconsistent.

Is the set {P ⊃ Q, Q ⊃ R, P & ∼R} ST -consistent?

P ⊃ Q ✓
Q ⊃ R ✓

P & ∼R ✓

P
∼R

∼P
×

Q

∼Q
×

R
×

Because the tree closes, we know that the set {P ⊃ Q, Q ⊃ R, P & ∼R} is ST -inconsistent.

Is the set {∼[(B & C) ≡ (A∨ D)],∼(A ⊃ D)} ST -consistent?
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∼[(B & C) ≡ (A∨ D)] ✓
∼(A ⊃ D) ✓

A
∼D

B & C
∼(A∨ D) ✓

∼A
∼D
×

∼(B & C) ✓
A∨ D ✓

∼B

A
#

D
×

∼C

A
#

D
×

Because the tree remains open, the set {∼[(B & C) ≡ (A ∨ D)],∼(A ⊃ D)} is ST -
consistent.

3.6 ReadingTruth-ValueAssignments offofOpenBranches

It’s important to note that the properties of ST -consistency and ST -inconsistency are
defined very differently than the properties of SL-consistency and SL-inconsistency. The
definition of SL-(in)consistency has to do with truth-value assignments,

SL-Consistency A set of wffs, {A1, A2, . . . , AN} is SL-consistent if and only if there
is some truth-value assignment which makes each of ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N true.

SL-Inconsistency A set of wffs, {A1, A2, . . . , AN} is SL-inconsistent if and only if
there is no truth-value assignment whichmakes each of ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N true.

Whereas the definition of ST -(in)consistency has nothing to do with truth-value as-
signments, and everything to do with whether certain trees close or not.

ST-Consistency A set of wffs, {A1, A2, . . . , AN} is ST -consistent if and only if every
truth tree which starts with ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N remains open.

ST-Inconsistency A set of wffs, {A1, A2, . . . , AN} is ST -inconsistent if and only if
every truth tree which starts with ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N closes.

Nevertheless, there is an important relationship between SL-(in)consistency and ST -
(in)consistency. While we will have to wait until later in the class to see the proof of this
relationship, let me go ahead and inform you now that a set of wffs of SL is SL-consistent
iff it is ST -consistent; and a set of wffs of SL is SL-inconsistent iff it is ST -inconsistent.
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Fact: For any set of wffs of SL, {A1, A2, . . . , AN}, that set is SL-consistent if
and only if it is ST -consistent, and SL-inconsistent if and only if it is ST -
inconsistent.

This fact tells us that ST -(in)consistency is a property worth paying attention to. We can
use the trees to tell us something about truth-value assignments. If a tree closes, then we
know that there is no truth-value assignment that makes all the wffs at the base of the
tree true. If the tree remains open, then we know that there is a truth-value assignment
which makes all of the wffs at the base of the tree true.

In fact, we can use truth trees to do more than this. If a tree remains open, we may use
the open branches of the tree to read off truth-value assignments which make the wffs
at the root of the tree true.

Here’s an example to illustrate how we can do that: suppose that we start off with the set
of wffs {A ≡ (B ≡ ∼A)}. Here is a completed tree for this set of wffs:

A ≡ (B ≡ ∼A) ✓

A
B ≡ ∼A ✓

B
∼A
×

∼B
∼ ∼A ✓

A
#

∼A
∼(B ≡ ∼A) ✓

B
∼ ∼A
×

∼B
∼A
#

This tree has four branches. The first and the third close; whereas the second and the
fourth remain open. Look to the atomic wffs and negated atomic wffs which show up
on the second and fourth branches of the tree. On the second, we have ‘A’ and ‘∼B’. On
the fourth, we have ‘∼A’ and ∼B’. The atomic wffs on the second branch are true iff A is
true and B is false. The atomic wffs on the fourth branch are true iff both A and B are
false.

Now consider the truth-table for ‘A ≡ (B ≡ ∼A)’:

A B A ≡ (B ≡ ∼ A)
T T T F T F F T
T F T T F F F T
F T F F T T T F
F F F T F F T F
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The truth-table shows us that ‘A ≡ (B ≡ ∼A)’ is true 1) when A is true and B is false;
and 2) when both A and B are false.

This suggests the following idea: if a tree remains open, then you may find a partial
truth-value assignment which makes all of the wffs at the top of the tree true as follows:
pick an open branch and look at all of the wffs on that branch which are either atomic
or negations of atomic wffs. If an atomic wff ⌜P⌝ appears on that branch, then let ⌜P⌝
be true. If a negation of an atomic wff ⌜∼P⌝ appears on that branch, then let ⌜P⌝ be
false. If neither ⌜P⌝ nor ⌜∼P⌝ appears on that branch, then you may let ⌜P⌝ be either
true or false—it won’t matter.

To find a partial truth-value assignment which makes all the wffs at the base
of an open tree true,

1. Select an open branch.

2. If an atomic wff ⌜P⌝ appears on that branch, then let ⌜P⌝ be true.

3. If a negation of an atomic wff ⌜∼P⌝ appears on that branch, then let
⌜P⌝ be false.

4. If neither ⌜P⌝ nor ⌜∼P⌝ appears on that branch, then youmay let ⌜P⌝
be either true or false.

This method will always work out. You can take my word for it for now—though that
is something that we will have to prove later on in the course, as well. You may use this
method to check whether you have done a tree correctly, assuming that the tree remains
open. If it does, then you may plug in the partial truth-value assignment determined by
one of the open branches and check to make sure that all of the wffs at the top of the tree
are true on that partial truth-value assignment. (If they are not all true, then you know
that you’ve done something wrong).

For instance, consider the following tree:

(A ⊃ B) ⊃ C ✓
∼C

∼(A ⊃ B) ✓

A
∼B
#

C
×
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On the open branch in this tree, we have the wffs ‘A’, ‘∼B’, and ‘∼C’. This gives us the
following partial true-value assignment:

A is true
B is false
C is false

Looking at this row of the truth-table we see that both wffs in {(A ⊃ B) ⊃ C,∼C} are
true:

A B C (A ⊃ B) ⊃ C ∼ C
T F F T F F T F T F

For another example, consider the tree which begins with the set of wffs {A ⊃ ∼(B ⊃
C),∼B}:

A ⊃ ∼(B ⊃ C) ✓
∼B

∼A
#

∼(B ⊃ C) ✓

B
∼C
×

‘∼A’ and ‘∼B’ appear on the only open branch of this tree. Neither ‘C’ nor ‘∼C’ appear
on this branch. So we may let C be either true or false. That is: this branch suggests the
following two partial truth-value assignments:

A is false A is false
B is false B is false
C is true C is false

And, when we check these truth-value assignments, we see that they make both ‘A ⊃
∼(B ⊃ C)’ and ‘∼B’ true:

A B C A ⊃ ∼ (B ⊃ C) ∼ B
F F T F T F F T T T F
F F F F T F F T F T F
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3.7 ST-Validity

We saw before that an SL-argument P1 / P2 / . . . / PN // C is SL-valid if and only if
the set {P1, P2, . . . , PN ,∼C} is SL-inconsistent. Since the set {P1, P2, . . . , PN ,∼C} is SL-
inconsistent if and only if it is ST -inconsistent, wemay use truth-trees to tests arguments
for SL-validity.

Let’s define a new notion: ST -validity. An SL argument is ST -valid if and only if the
tree beginning with the wffs ⌜P1

⌝, ⌜P2
⌝, . . . , ⌜PN

⌝, and ⌜∼C⌝ closes.

P1

P2

...

PN

∼C

× × × × × × ×

⇐⇒ P1 / P2 / . . . / PN // C is ST -valid

Similarly, we will say that an SL-argument is ST -invalid if and only if the tree beginning
with the wffs ⌜P1

⌝, ⌜P2
⌝, . . . , ⌜PN

⌝, and ⌜∼C⌝ remains open.

P1

P2

...

PN

∼C

×# × × × × ×

⇐⇒ P1 / P2 / . . . / PN // C is ST -invalid

It’s important to distinguish between SL-(in)validity and ST -(in)validity. The former is
defined in terms of truth-value assignments; whereas the latter is defined in terms of the
truth-trees. As it turns out, these two notions are deeply connected. Towards the end of
the course, we will prove that an argument is SL-valid if and only if it is ST -valid, and
that it is SL-invalid if and only if it is ST -invalid.

Fact: For any SL-argument P1 / P2 / . . . / PN // C, that argument is SL-
valid if and only if it is ST -valid, and SL-invalid if and only if it is ST -invalid.
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However, this is something that we will have to prove. It is not obviously or straightfor-
wardly true.

Consider the following SL-argument:

L ⊃ ∼M / N ⊃ M / L ⊃ N // ∼L

To test this argument for ST -validity, we begin by placing its premises and the negation
of its conclusion at the top of a tree, as follows:

L ⊃ ∼M
N ⊃ M
L ⊃ N
∼ ∼L

We may then apply the rule for ⊃ to the first premise, to get:

L ⊃ ∼M ✓
N ⊃ M
L ⊃ N
∼ ∼L

∼L
×

∼M

Applying the rule for ⊃ to the third premise, we get:

L ⊃ ∼M ✓
N ⊃ M
L ⊃ N ✓
∼ ∼L

∼L
×

∼M

∼L
×

N

Finally, applying the rule for ⊃ to the second premise, we get:
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L ⊃ ∼M ✓
N ⊃ M ✓
L ⊃ N ✓
∼ ∼L

∼L
×

∼M

∼L
×

N

∼N
×

M
×

Because the tree closes, we know that L ⊃ ∼M / N ⊃ M / L ⊃ N // ∼L is ST -valid.

Next, consider the SL-argument

P ⊃ Q / Q ⊃ R / ∼Q // R

To see whether this argument is ST -valid, we place its premises and the negation of its
conclusion at the top of a tree, as follows:

P ⊃ Q
Q ⊃ R
∼Q
∼R

Completing the tree, we arrive at:

P ⊃ Q ✓
Q ⊃ R ✓
∼Q
∼R

∼P

∼Q
#

R
×

Q
×

Since the tree remains open, we know that the SL-argument P ⊃ Q / Q ⊃ R / ∼Q // R
is ST -invalid.

Moreover, we may use the tree to read off a partial truth-value assignment which makes
the premises of the argument all true yet makes its conclusion false. We proceed exactly
as before. On the only open branch of the tree, we have the wffs ‘∼P’, ‘∼Q’, and ‘∼R’. This
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gives us the partial truth-value assignment

P is false
Q is false
R is false

This partial truth-value assignment is what we will call an ST -counterexample to the
validity of the argument P ⊃ Q / Q ⊃ R / ∼Q // R.

If we look at the corresponding row of the truth-table, we find that it is additionally an
SL-counterexample to the SL-validity of the argument:

P Q R P ⊃ Q Q ⊃ R ∼ Q R
F F F F T F F T F T F F

ST-counterexample An ST -counterexample to the ST -validity of an SL-argument
is a partial truth-value assignment read off of an open branch of the truth tree
containing the argument’s premises and the negation of the argument’s conclusion
at its root (i.e., the partial truth-value assignment that we get when we follow the
procedure from §3.6 above).

3.8 ST-Tautologies, ST-Contradictions, and ST-Contingencies

3.8.1 ST-Tautologies

A wff of SL, ⌜P⌝, is an ST -tautology if and only if a tree with ⌜∼P⌝ at its root closes.

∼P

× × × × × × ×
⇐⇒ P is an ST -tautology

Correlatively, a wff of SL is not an ST -tautology if and only if a tree with ⌜∼P⌝ at its root
remains open.

∼P

× × × ×# × ×
⇐⇒ P is not an ST -tautology

Here, again, it is important to keep the notion of an ST -tautology separate from the
notion of an SL-tautology. The definition of an SL-tautology has to do with truth-value



3.8. ST-Tautologies, ST-Contradictions, and ST-Contingencies 65

assignments ( ⌜P⌝ is an SL-tautology iff ⌜P⌝ is true on every truth-value assignment),
whereas the definition of an ST -tautology has nothing to do with truth-value assign-
ments and everything to do with whether, when we apply the tree rules, our tree closes.

Now, it turns out that these two notions line up perfectly; that is, it turns out that:

Fact: A wff of SL is an SL-tautology if and only if it is an ST -tautology.

That is: it turns out that a wff of SL is true on every truth-value assignment if and only
if the tree which starts with the negation of that wff at its root closes. However, this is
something that we will have to prove; and not something that we may simply take for
granted.

Consider, for instance, the wff of SL ‘((Z ⊃ W) & Z) ⊃ W ’. When we put the negation
of this wff at the root of a tree and apply the rules, we get:

∼(((Z ⊃ W) & Z) ⊃ W) ✓

(Z ⊃ W) & Z ✓
∼W

Z ⊃ W ✓
Z

∼Z
×

W
×

Since every branch of the tree closes, the tree closes; and thus, the wff ‘((Z ⊃ W) & Z) ⊃
W ’ is an ST -tautology.

3.8.2 ST-Contradictions

A wff of SL, ⌜P⌝, is an ST -contradiction if and only if a tree with ⌜P⌝ at its root closes.

P

× × × × × × ×
⇐⇒ P is an ST -contradiction
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Correlatively, a wff of SL is not an ST -tautology if and only if a tree with ⌜∼P⌝ at its root
remains open.

P

× × × ×# × ×
⇐⇒ P is not an ST -contradiction

Again, it turns out that the notion of an SL-contradiction lines up perfectly with the
notion of an ST -contradiction; that is, it turns out that:

Fact: A wff of SL is an SL-contradiction if and only if it is an ST -
contradiction.

That is: it turns out that a wff of SL is false on every truth-value assignment if and only if
the tree which starts with that wff at its root closes. We will prove this later in the course.

Consider the wff ‘((A ∨ ∼B) & (∼A ∨ B)) & ∼(A ≡ B)’. When we construct the tree
with this wff at its root, we get:

((A∨ ∼B) & (∼A∨ B)) & ∼(A ≡ B) ✓

(A∨∼B) & (∼A∨ B) ✓
∼(A ≡ B) ✓

A∨ ∼B ✓
∼A∨ B ✓

A
∼B

A

∼A
×

B
×

∼B

∼A
×

B
×

∼A
B

A
×
∼B
×

Since the tree with ‘((A ∨ ∼B) & (∼A ∨ B)) & ∼(A ≡ B)’ at its root closes, that wff is
an ST -contradiction.
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3.8.3 ST-Contingencies

A wff of SL, ⌜P⌝, is an ST -contingency if and only if both a tree with ⌜∼P⌝ at its root
closes and a tree with ⌜P⌝ at its root closes.

P

× ×# × × × ×
and

∼P

× ×# × × × ×
⇐⇒ P is an ST -contingency

Correlatively, a wff of SL is not an ST -contingency if and only if either a tree with ⌜∼P⌝

at its root remains open or a tree with ⌜P⌝ at its root remains open.

P

× × × × × × ×
or

∼P

× × × × × × ×
⇐⇒ P is not an ST -contingency

Again, it turns out that the notion of an SL-contingency lines up perfectly with the no-
tion of an ST -contingency; that is, it turns out that:

Fact: A wff of SL is an SL-contingency if and only if it is an ST -contingency.

That is: it turns out that a wff of SL is true on some truth-value assignments and false
on other truth-value assignments if and only if both the tree which starts with that wff
at its root remains open and the tree which starts with the negation of that wff at its root
remains open. We will prove this later in the course.

Consider the wff ‘((Z ⊃ W) & W) ⊃ Z’. When we put the negation of this wff at the
root of a tree and apply the rules, we get:

∼(((Z ⊃ W) & W) ⊃ Z) ✓

(Z ⊃ W) & W ✓
∼Z

Z ⊃ W ✓
W

∼Z
#

W
#

Because the tree remains open, this tells us that the wff ‘((Z ⊃ W) & W) ⊃ Z’ is not an
ST -tautology.

When we put ‘((Z ⊃ W) & W) ⊃ Z’ at the root of a tree and apply the tree rules, we get:



3.9. ST-Equivalence 68

((Z ⊃ W) & W) ⊃ Z ✓

∼((Z ⊃ W) & W) ✓

∼(Z ⊃ W) ✓

Z
∼W
#

∼W
#

Z
#

Because the tree remains open, this tells us that ‘((Z ⊃ W) & W) ⊃ Z’ is not an ST -
contradiction. Thus, ‘((Z ⊃ W) & W) ⊃ Z’ is an ST -contingency.

3.9 ST-Equivalence

A pair of wffs of SL, ⌜P⌝ and ⌜Q⌝, are ST -equivalent if and only if a tree with ⌜∼(P ≡
Q)⌝ at its root closes.

∼(P ≡ Q)

× × × × × × ×
⇐⇒ P and Q are ST -equivalent

Correlatively, a pair of wffs of SL, ⌜P⌝ and ⌜Q⌝, are not ST -equivalent if and only if a
tree with ⌜∼(P ≡ Q)⌝ at its root remains open.

∼(P ≡ Q)

× × × ×# × ×
⇐⇒ P and Q are not ST -equivalent

As before, it is important to keep the notion of ST -equivalence distinct from the notion
of SL-equivalence. Twowffs of SL are SL-equivalent if and only if there is no truth-value
assignment onwhich they have different truth-values. Twowffs of SL are ST -equivalent
iff a certain tree formed by correct application of the rules for trees ends up with ×’s at
the end of all of its branches. These are very different kinds of properties. However, it
turns out that the two of them line up perfectly. That is, it turns out that:

Fact: Twowffs of SL are SL-equivalent if and only if they are ST -equivalent.

Consider the pair of wffs ‘J ⊃ K’ and ‘∼K ⊃ ∼J’. To see that these two wffs are ST -
equivalent, we can construct the tree which begins with ‘∼((J ⊃ K) ≡ (∼K ⊃ ∼J))’:
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∼((J ⊃ K) ≡ (∼K ⊃ ∼J)) ✓

J ⊃ K ✓
∼(∼K ⊃ ∼J) ✓

∼K
∼ ∼J

∼J
×

K
×

∼(J ⊃ K) ✓
∼K ⊃ ∼J ✓

J
∼K

∼ ∼K
×

∼J
×

Since this tree closes, we know that ‘J ⊃ K ’ and ‘∼K ⊃ ∼J’ are ST -equivalent.



Chapter 4

Predicate Logic

4.1 The Language PL

Before getting into the nitty-gritting, some preliminary orientation: we’re going to use
capital letters to denote properties that a thing might or might not have and relations
things might or might not bear to one another, and we’re going to use lowercase letters
to denote the things that may ormay not have those properties ormay andmay not bear
those relations to one another. So, for instance, we could use the capital letters T , L, and
K to represent the following properties and relations:

Tx = x was tall
Lxy = x loved y
Kxy = x killed y

and we could use l, b, c, and p to represent the following individuals:

l = Abraham Lincoln
b = John Wilkes Booth
c = Caesar
p = Pompey

70
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If we put the lowercase letters representing individuals in the place of ‘x’ and ‘y’ above,
we get statements like the following:

Tl = Abraham Lincoln was tall
Kbl = John Wilkes Booth killed Abraham Lincoln
Lcp = Caesar loved Pompey

We can treat these statements the same way that we treated the statement letters of SL—
they can be the negands of negations, the antecedents of conditionals, the disjuncts of
disjunctions, and so on and so forth.

∼Lbl = John Wilkes Booth didn’t love Abraham Lincoln
Kcp ⊃ ∼Lcp = If Caesar killed Pompey, then he didn’t love him

Tc∨ Tb = Either Caesar or John Wilkes Booth is tall

We’re also going to be able to translate claims like ‘everyone loves someone’ and ‘no one
loves anyone who killed them’. They will be translated like so:

(∀x)(∃y)Lxy = Everyone loves someone
∼(∃x)(∃y)(Kyx & Lxy) = No one loves anyone who killed them

But in order to understand that, we’ll have to get into the nitty-gritty.

4.1.1 The Syntax of PL

In this section, I’m going to tell you what the vocabulary of PL is and I’m going to tell
you which expressions of PL are grammatical—which are well-formed—just as we did
for SL.

Vocabulary

The vocabulary of PL includes the following symbols:

1. for each n ≥ 0, an infinite number of n-place predicates (any capital letter, along
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with a superscript n—perhaps with subscripts)

A1 B1 . . . Z1 A1
1 . . . Z1

1 A1
2 . . .

A2 B2 . . . Z2 A2
1 . . . Z2

1 A2
2 . . .

...
... · · ·

...
... · · ·

...
... · · ·

An Bn . . . Zn An
1 . . . Zn

1 An
2 . . .

...
... · · ·

...
... · · ·

...
... · · ·

2. An infinite number of constants (any lowercase letter between a and v—perhaps
with subscripts)

a, b, c, . . . , u, v, a1, b1, . . . , v1, a2, b2, . . .

3. An infinite number of variables (lowercase w, x, y, or z—perhaps with subscripts)

w, x, y, z,w1, x1, y1, z1,w2, x2, . . .

4. Logical operators
∼,∨, & ,⊃,≡,∃,∀

5. parenthases
( , )

Nothing else is included in the vocabulary of PL.

Terminology: Let’s call both constants and variables terms. That is, both ‘a’ and ‘x’ are
terms of PL.

Grammar

Any sequence of the symbols in the vocabulary of PL is a formula of PL. For instance,
all of the following are formulae of PL:

V2800x ∼ ((⊃⊃ anv

P1Q2R3S 4T 5 ∼∼
((∀x)F3xab ⊃ ∼(∃y)P4ynst)

N54xy∨ ∼ ∼(∃x)B2x
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However, only one—the third—is a well-formed formula (or ‘wff ’) of PL. We specify
what it is for a string of symbols from the vocabulary of PL to be a wff of PL with the
following rules.

F ) If ⌜F n ⌝ is an n-place predicate and ⌜t⌝1, ⌜t⌝2, . . . , ⌜t⌝n are n terms, then ⌜F nt1t2...t⌝n
is a wff.

∼) If ⌜P⌝ is a wff, then ⌜∼P⌝ is a wff.

&) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P & Q)⌝ is a wff.

∨) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P∨Q)⌝ is a wff.

⊃) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P ⊃ Q)⌝ is a wff.

≡) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P ≡ Q)⌝ is a wff.

∀) If ⌜P⌝ is a wff and ⌜x⌝ is a variable, then ⌜(∀x)P⌝ is a wff.

∃) If ⌜P⌝ is a wff and ⌜x⌝ is a variable, then ⌜(∃x)P⌝ is a wff.

− Nothing else is a wff.

Note: none of ‘F ’, ‘a’, ‘P’, and ‘Q’ appear in the vocabulary of PL. They are not themselves
wffs of PL. Rather, we are using them here as variables ranging over the formulae of
PL. In PL, we used lowercase letters for this purpose. However, in PL, lowercase letters
are terms of the language, so we must use other symbols for the variables ranging over
the formulae of PL. We have chosen to use boldface and script letters for this purpose.
Capital script letters are variables ranging over the predicates of PL; boldface capital
letters are variables ranging over wffs of PL; and boldface lowercase letters are variables
ranging over the terms of PL.

All and only the strings of symbols that can be constructed by repeated application
of the rules above are well-formed formulae. For instance, if we wanted to show that
‘((∀y)F1y ⊃ ∼(∃x)(∃z)G2zx)’ is a wff of PL, we could walk through the following
steps to build it up:
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a) ‘F1y’ is a wff [from (F )]

b) So, ‘(∀y)F1y’ is a wff [from (a) and (∀)]

c) ‘G2zx’ is a wff [from (F )]

d) So, ‘(∃z)G2zx’ is a wff [from (c) and (∃)]

e) So, ‘(∃x)(∃z)G2zx’ is a wff [from (d) and (∃)]

f) So, ‘∼(∃x)(∃z)G2zx’ is a wff [from (e) and (∼)]

g) So, ‘((∀y)F1y ⊃ ∼(∃x)(∃z)G2zx)’ is a wff [from (b), (f), and (⊃)]

As before, we will adopt the convention of dropping the outermost parenthases in a wff
of PL. We will additionally adopt the convention of dropping the superscripts on the
predicates of PL. So, abiding by our informal conventions, we would write the wff of PL
‘((∀y)F1y ⊃ ∼(∃x)(∃z)G2zx)’ as:

(∀y)Fy ⊃ ∼(∃x)(∃z)Gzx

I’ll adopt these conventions from here on out.

We could, just as before, use syntax trees to represent the way that a wff of PL is built
up according to the rules for wffs given above. For instance, we could notate the proof
given above as follows:

(∀y)Fy ⊃ ∼(∃x)(∃z)Gzx

(⊃)

(∀y)Fy

(∀)

Fy

(F )

∼(∃x)(∃z)Gzx

(∼)

(∃x)(∃z)Gzx

(∃)

(∃z)Gzx

(∃)

Gzx

(F )
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The left-hand branch of this syntax tree tells us that ‘Fy’ is a wff, by rule (F ); and that,
therefore, ‘(∀y)Fy’ is a wff, by rule (∀). The right-hand branch tells us that ‘Gzx’ is a wff,
by rule (F ); and that, therefore, ‘(∃z)Gzx’ is a wff, by rule (∃). Thus, ‘(∃x)(∃z)Gzx’ is
a wff, by rule (∃) again; and, finally, that, therefore, ‘∼(∃x)(∃z)Gzx’ is a wff, by rule (∼).
Putting together what we have from the left-hand branch and the right-hand brach, we
can conclude that ‘(∀y)Fy ⊃ ∼(∃x)(∃z)Gzx’ is a wff, by rule (⊃).

That is to say: the syntax tree tells us exactly what the proof above tells us. It tells us how
we may show that ‘(∀y)Fy ⊃ ∼(∃x)(∃z)Gzx’ is a wff of PL by building it up out of its
components, according to the rules for wffs for PL.

If we want a simpler way of notating a syntax tree like this, then we may simply remove
the justifications (recognizing that they are clear from the context of what lies above
each wff on the syntax tree), and write it out as follows:

(∀y)Fy ⊃ ∼(∃x)(∃z)Gzx

(∀y)Fy

Fy

∼(∃x)(∃z)Gzx

(∃x)(∃z)Gzx

(∃z)Gzx

Gzx

Free and Bound Variables

Our rules for wffs count ‘Fx’ and ‘Ayc’ as well-formed formulae. However, the vari-
ables that appear in these wffs are free. On the other hand, the variables appearing in
‘(∀x)(∀y)Fxy’ are bound. In ‘(∀x)Px ⊃ Qx’, the first occurrence of the variable ‘x’ is
bound, whereas the second occurrence is free.

To make these ideas precise, let’s introduce the idea of a quantifier. For any variable
⌜x⌝, both ⌜(∀x)⌝ and ⌜(∃x)⌝ are quantifiers. We call ⌜(∀x)⌝ the universal quan-
tifier, and we call ⌜(∃x)⌝ the existential quantifier. These quantifiers are logical
operators. They can be themain operator of a wff of PL or they can be themain opera-
tor of a wff ’s subformulae. Each quantifier has one and only one associated variable. For
instance, the variable associated with the quantifier ‘(∀z)’ is ‘z’. The variable associated
with the quantifier ‘(∃y)’ is ‘y’.

As before, we can define the main operator of a wff of PL to be the logical operator
whose associated rule is last appealed to when building the wff up according to the rules
given above. So, for instance, the main operator of ‘(∀y)Fy ⊃ ∼(∃x)(∃z)Gzx’ is the
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horseshoe ‘⊃’. The main operator of ‘(∀x)Fx’, on the other hand, whose syntax tree is
shown below, is the universal quantifier ‘(∀x)’.

(∀x)Fx

Fx

Similarly, the main operator of ‘(∃y)(Fy& Ga)’ is ‘(∃y)’.

(∃y)(Fy& Ga)

Fy& Ga

Fy Ga

We can define subformula in the same way that we defined it before: ⌜P⌝ is a subfor-
mula of ⌜Q⌝ if and only if ⌜P⌝ must show up on a line during the proof that ⌜Q⌝ is a
wff of PL. In terms of the syntax trees: ⌜P⌝ is a subformula of ⌜Q⌝ if and only if ⌜P⌝
lies somewhere on ⌜Q⌝’s syntax tree.

Similarly, we can define immediate subformula in precisely the same way as before:
⌜P⌝ is an immediate subformula of ⌜Q⌝ iff a line asserting that ⌜P⌝ is a wff must be
appealed to in the final line of a proof showing that ⌜Q⌝ is a wff, according to the rules
for wffs given above. In terms of the syntax tress: ⌜P⌝ is an immediate subformula
of ⌜Q⌝ iff ⌜P⌝ lies immediately below ⌜Q⌝ on the syntax tree. Then, the immediate
subformula of ‘(∀x)Fx’ is ‘Fx’, and the immediate subformula of ‘(∃y)(Fy& Ga)’ is
‘Fy& Ga’.

The scope of a quantifier appearing in a wff of PL, ⌜P⌝, is the immediate subformula of
the subformula of ⌜P⌝ for which that quantifier is the main operator.

The scope of a quantifier—(∀x) or (∃x)—is the immediate subformula of
the wff for which that quantifier is the main operator.

So, for instance, in the wff (∃y)Lyy ⊃ (∃x)(∃y)Lxy, whose syntax tree is shown below,

(∃y)Lyy ⊃ (∃x)(∃y)Lxy

(∃y)Lyy

Lyy

(∃x)(∃y)Lxy

(∃y)Lxy

Lxy

The scope of the very first existential quantifier ‘(∃y)’ is the formula ‘Lyy’. The scope of
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the second existential quantifier ‘(∃x)’ is ‘(∃y)Lxy’. And the scope of the final existential
quantifier ‘(∃y)’ is ‘Lxy’.

Now, we can define the notions of a free and a bound variable.

A variable x in a wff of PL is bound if and only if it occurs within the scope
of a quantifier, (∀x) or (∃x), whose associated variable is x.

A variable x in a wff of PL is free if and only if it does not occur within the
scope of a quantifier, (∀x) or (∃x), whose associated variable is x.

For instance, in the wff
(∀x)(∀y)Fy ⊃ (∃z)Gzx

The final occurrence of ‘x’ is free. Even though there is a universal quantifier ‘(∀x)’ in
the wff, the final ‘x’ does not occur within the scope of this universal quantifier, so it is
not bound by it.

We can similarly define the notion of what it is for a quantifier to bind a variable.

In a wff of PL, a quantifier (∀x) or (∃x) binds a variable x if and only if x
occurs free within that quantifier’s scope.

This means that a variable can only be bound by a single quantifier. So, for instance, in
the following wff of PL,

(∃x)(∀x)Fx

The variable ‘x’ is bound by the universal quantifier ‘(∀x)’. It is not bound by the exis-
tential quantifier ‘(∃x)’.

Note: variable symbols (w, x, y, z) are only free or bound when they occur after a predi-
cate letter. The variable symbols that appearwithin the quantifiers themselves are neither
free nor bound. So, for instance, in the wff ‘(∀x)(∀x)Lxx’, the symbol ‘x’ appearing in
the second (innermost) universal quantifier is not bound by the first (outermost) univer-
sal quantifier. The only occurrences of the symbol ‘x’ which are either free or bound are
the final two, after ‘L’, and both of them are bound by the second (innermost) universal
quantifier.
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Important Syntactic Features in PL

Parenthases will serve an important rule in distinguishing wffs of PL, just as they played
an important role in distinguishing the wffs of PL. Thus, ‘(∀x)((∃y)Lxy ⊃ Gx)’ is a
different wff than ‘(∀x)(∃y)Lxy ⊃ Gx’; for they have different syntax trees, as shown
below:

(∀x)((∃y)Lxy ⊃ Gx)

(∃y)Lxy ⊃ Gx

(∃y)Lxy

Lxy

Gx

(∀x)(∃y)Lxy ⊃ Gx

(x)(∃y)Lxy

(∃y)Lxy

Lxy

Gx

And, in fact, one of these wffs can be truewhile the other is false (that is to say, theymean
different things). So it will be very important in PL to keep track of your parentheses.

Similarly, the order of the terms following the predicates in PL matter. ‘Lab’ is a dif-
ferent wff than ‘Lba’; similarly, ‘(∀x)(∃y)Lxy’ is a different wff than ‘(∀x)(∃y)Lyx’. For
they have different syntax trees,

(x)(∃y)Lxy

(∃y)Lxy

Lxy

(x)(∃y)Lyx

(∃y)Lyx

Lyx

(since they have different wffs on each line). Moreover, this difference is also one that
will end up making a difference to the meaning of the wffs of PL. Again, if Lxy = x
loves y, and we’re considering only people, then we’ll end up seeing that ‘(∀x)(∃y)Lxy’
says that everybody loves somebody else; whereas ‘(∀x)(∃y)Lyx’ says that everybody is
loved by somebody else. And these two mean very different things—we’ll end up seeing
that one could be true while the other is false.

Moreover, the order of quantifiers plays an important role in distinguishing the wffs
of PL. For instance, ‘(∃x)(∀y)Lxy’ is a different wff of PL than ‘(∀y)(∃x)Lxy’. For
these wffs of PL have different syntax trees, as shown below:

(∃x)(∀y)Lxy

(∀y)Lxy

Lxy

(∀y)(∃x)Lxy

(∃x)Lxy

Lxy
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And, again, this is a difference that will end up making a difference. If Lxy = x loves y,
and we’re considering only people, then we’ll end up seeing—once we’ve given the se-
mantics for PL, below—that ‘(∃x)(∀y)Lxy’ says that somebody loves everybody; whereas
‘(∀y)(∃x)Lxy’ says that everybody is loved by somebody. And these twomean very dif-
ferent things. So we must be careful to pay attention to the order of the quantifiers.

4.1.2 Semantics for PL

In SL, we defined the semantics for the language in terms of truth-value assign-
ments. A truth-value assignment, recall, was just an assignment of truth-value (either
true or false), to all of the statement letters of SL.

A truth-value assignment is an assignment of truth-value—either true
or false—to every statement letter of SL.

We then gave definitions for ∼,∨, & ,⊃, and ≡ that allowed us to say, for any given wff
of SL, whether it was true or false on that truth-value assignment. Since this allowed
us to understand the circumstances under which the wffs of SL were true or false, this
provided us with the meaning of the wffs of SL.

However, we saw that, since there were so many statement letters of SL, specifying a
truth-value assignment was prohibitively difficult. So, instead, we realized that we could
look at a partial truth-value assignment. Where, recall,

A partial truth-value assignment assigns a truth-value—either true or
false—to each statement letter in some set of statement letters.

Each row of a truth-table represented a partial truth-value assignment. The definitions
we gave of ∼, & ,∨,⊃, and ≡ then allowed us to work out the truth-value of a given wff
of SL in every partial truth-value assignment (that is, in every row of the truth-table).

We’re going to do exactly the same thing with PL. However, rather than dealing with
truth-value assignments, we’re going to deal with PL-interpretations.
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A PL-interpretation, I , provides

1. A specification of which things fall in the domain, D , of the interpre-
tation.

2. For every variable of PL, a specification of which thing in the domain
D it represents.

3. For every constant of PL, a specification of which thing in the domain
D it represents.

4. For every predicate of PL, a specification of the property or relation it
represents.

Because a PL interpretation requires us to say of every term in the language which thing
in the domain that term denotes—and because it requires us to say of every predicate
in the language which property or relation it denotes—and because there are an infinite
number of terms and predicates in our language, specifying a full PL-interpretation is
just as difficult as specifying a full truth-value assignment. Therefore, just as we intro-
duced the idea of a partial truth-value assignment (which were just the rows of the
truth-tables in SL), we will also introduce the idea of a partial PL-interpretation.

Given a wff, set of wffs, or argument of PL, a partial PL-interpretation,
I p provides:

1. A specification of which things fall in the domain, D , of the partial
interpretation.

2. For the free variables appearing in the wff, set of wffs, or argument of
PL, a specification of which thing in the domain D they represent.

3. For the constants appearing in the wff, set of wffs, or argument of PL,
a specification of which thing in the domain D they represent.

4. For the predicates appearing in the wff, set of wffs, or argument of PL,
a specification of the property or relation they represent.

For instance, suppose that we have the following wff of PL,

∼(∀y)Lya ⊃ ∼Ha
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Here is a partial interpretation of this wff:

I p =


D = { Adam, Betsy, Carol }
a = Adam

Lxy = x loves y
Hx = x is happy

We specified the domain, D . Since all of the variables are bound, we do not need to say
which thing they refer to. There is only one constant in the wff, ‘a’, and we said what
that constant referred to—Adam. And there are just two predicates in this wff: a 1-place
predicate ‘H’, and a 2-place predicate in the wff, ‘L’. And we said that Hx referred to the
property ‘x is happy’ and that Lxy referred to the relation ‘x loves y’. So we’ve provided
a partial PL interpretation for this wff.

4.1.3 More on PL-Interpretations of Predicates

Above, I interpreted H by just saying that Hx means that x is happy and I interpreted
L by just saying that Lxy means that x loves y. This is fine, as far as it goes, except that
you might not know whether Adam is happy, or whether Adam loves Betsy, or whether
Betsy loves Carol. There is another way of specifying a the meaning of a predicate of PL
that will tell us precisely which objects in the domain have the relevant property or bear
the relevant relation to one another.

Suppose that only Adam and Betsy are happy. Then, we could specify the meaning of
H, relative to our domain, by just telling you that it applies to Adam and Betsy. Here’s
a way to do that: we just give, as our interpretation of H, the set containing Adam and
Betsy:

H = { Adam , Betsy}

And we can do precisely the same thing with the 2-place predicate L. Suppose that both
Adam and Betsy love Carol, but that nobody loves anybody else. Then, we can specify
the meaning of L, relative to our domain, by just telling you that it relates Adam to
Carol and that it relates Betsy to Carol. Here is a way to do that: we just give, as our
interpretation of L, the set containing the ordered pairs < Adam, Carol > and < Betsy,
Carol >:

L = {< Adam, Carol >,< Betsy, Carol >}

Above, I appealed to the idea of an ‘ordered pair’. You are probably already familiar with
this concept from geometry. In geometry, you can specify a point in the 2-dimensional
plane by giving its x-coordinate and its y-coordinate. So, for instance, < 1, 2 > repre-
sents the point which you reach if you go 1 unit over on the x-axis and then 2 units up
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Figure 4.1

on the y-axis. The important thing to note here is that the point< 1, 2 > is very different
from the point < 2, 1 >. The point you reach by going 2 units over on the x-axis and
then 1 unit up on the y-axis is not the same point that you reach by going 1 unit over on
the x-axis and then 2 units up on the y-axis. (See figure 4.1.)

The important points to recognize and remember are just these:

1. With sets, order does not matter. {a, b, c} is the same set as {b, c, a}.

2. With ordered pairs, order does matter. < a, b > is a different ordered pair than
< b, a >.

Ordered pairs are useful when we are talking about relations because, when we are talk-
ing about relations like L, order matters. Simply because Adam loves Betsy, this does
not mean that Betsy loves Adam. So, just because < Adam, Betsy > is in the relation L,
this should not mean that < Betsy, Adam > is in the relation L as well.

The upshot is that, rather than specifying a partial PL interpretation I p like this:

I p =


D = { Adam, Betsy, Carol }
a = Adam

Lxy = x loves y
Hx = x is happy



4.1. The Language PL 83

We could instead provide a partial PL interpretation like so:

I p =


D = { Adam, Betsy, Carol }
a = Adam
L = {< Adam, Carol >,< Betsy, Carol >}
H = {Adam}

4.1.4 Truth on an Interpretation

Suppose that we’ve got an interpretation I . Then, we can lay down the following rules
which tell us what the wffs of PLmean on that interpretation—that is, under which con-
ditions they are true on that interpretation. (Rules (∼), (∨), (&), (⊃), and (≡) should
be familiar from SL.)

F ) A wff of the form ⌜F nt1 . . . t⌝n is true on the interpretation I if the things in the
domain denoted by ⌜t⌝1 . . .

⌜t⌝n on the interpretation have the property/bear to
each other the relation represented by ⌜F n ⌝. Otherwise, ⌜F nt1 . . . t⌝n is false on
the interpretation I .

Note: here, ‘n’ could be any number greater than or equal to one. If n = 1,
then the way that I’ve written the terms, ‘t1 . . . tn’, is misleading, since there
is only one term if n = 1.

∼) A wff of the form ⌜∼P⌝ is true on the interpretation I if ⌜P⌝ is false on the
interpretation I . Otherwise, ⌜∼P⌝ is false on the interpretation I .

∨) A wff of the form ⌜P∨Q⌝ is true on the interpretation I if either ⌜P⌝ is true on
the interpretation I or ⌜Q⌝ is true on the interpretation I . Otherwise, ⌜P∨Q⌝

is false on the interpretation I .

&) A wff of the form ⌜P & Q⌝ is true on the interpretation I if both ⌜P⌝ is true
on the interpretation I and ⌜Q⌝ is true on the interpretation I . Otherwise,
⌜P & Q⌝ is false on the interpretation I .

⊃) A wff of the form ⌜P ⊃ Q⌝ is true on the interpretation I if either ⌜P⌝ is false on
the interpretationI or ⌜Q⌝ is true on the interpretationI . Otherwise, ⌜P ⊃ Q⌝

is false on the interpretation I .

≡) A wff of the form ⌜P ≡ Q⌝ is true on the interpretation I if both ⌜P⌝ and ⌜Q⌝
have the same truth value on the interpretation I . Otherwise, ⌜P ≡ Q⌝ is false
on the interpretation I .
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Before getting to the rules for the quantifiers, (∀x) and (∃x), we have to introduce one
more idea: that of a variant interpretation. We’ve seen that an interpretation tells us
which things in the domain every variable refers to. So an interpretation will tell us that
the variable x refers to some thing α in the domain, D . Suppose, however, that we wish
to keep everything else about the interpretation fixed, but we wish to have the variable x
refer to something else, β. We may accomplish this with a variant interpretation, Ix→β.

If I is a PL-interpretation with domain D , x is a variable, and α is a thing in
the domain D , then Ix→α is a PL-interpretation exactly like I except that,
in Ix→α, the variable x refers to α. It is called an x-variant of the interpre-
tation I .

For instance, here’s a (partial) PL-interpretation:

I p =


D = {1, 2, 3}
x = 1

y = 2

And here are the y-variants, I p
y→1, I

p
y→2, and I p

y→3, of that interpretation:

I p
y→1 =


D = {1, 2, 3}
x = 1

y = 1

I p
y→2 =


D = {1, 2, 3}
x = 1

y = 2

I p
y→3 =


D = {1, 2, 3}
x = 1

y = 3

Notice thatI p
y→2 is just identical to the original (partial) interpretationI p. That doesn’t

matter; it is still a y-variant of I p.

We’re now in a position to give the rules for quantified statements being true on an
interpretation, I :

∀) A wff of the form ⌜(∀x)P⌝ is true on the interpretation I if, for every α in D ,
⌜P⌝ is true on the x-variant interpretation Ix→α. Otherwise, ⌜(∀x)P⌝ is false on
the interpretation I .

∃) A wff of the form ⌜(∃x)P⌝ is true on the interpretation I if for some α in D , ⌜P⌝
is true on the x-variant interpretation Ix→α. Otherwise, ⌜(∃x)P⌝ is false on the
interpretation I .

That is, a universally quantified wff ⌜(∀x)P⌝ is true on an interpretation I iff its im-
mediate subformula ⌜P⌝ is true on the interpretation I no matter what we take the
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variable x to refer to. And an existentially quantified wff ⌜(∃x)P⌝ is true on an inter-
pretation I iff there is at least one thing we could take x to refer to which would make
its immediate subformula ⌜P⌝ true on the interpretation I .

For instance, consider the following partial interpretation, I p:

I p =


D = {1, 2}
x = 1

y = 2

P = {2}

On I p, the variable x refers to the number 1, and the variable y refers to the number 2.
And ‘P’ is a property which is had by the number 2. Perhaps ‘P’ is the property of being
prime. The interpretation doesn’t give us enough information to say, since its domain is
limited to the numbers 1 and 2. However, this won’t end up mattering for the language
PL, since the only thing that’s relevant to the truth-value of a wff like ‘Pa’ is whether a
has the property P, and not precisely which property P is.

On this interpretation, the wff ‘Px’ is false, since the thing denoted by ‘x’—the num-
ber 1—does not have the property denoted by ‘P’. The wff ‘Py’, on the other hand, is
true, since the thing denoted by the variable y—the number 2—does have the property
represented by ‘P’.

Even though ‘Px’ and ‘Py’ have different truth-values, ‘(∃x)Px’ and ‘(∃y)Py’ both have
the same truth-value: true. To see that, note:

1. ‘(∃x)Px’ is true on the interpretation I p iff there is an x-variant of I p on which
‘Px’ is true.

2. I p
x→2 is an x-variant of I p on which x refers to the number 2. Since the number

two has the property of being P, ‘Px’ is true on the x-variant interpretation I p
x→2.

3. So, there is an x-variant of the interpretation I p on which ‘Px’ is true.

4. So, ‘(∃x)Px’ is true on the interpretation I p.

Similarly,

1. ‘(∃y)Py’ is true on the interpretation I p iff there is a y-variant of I p on which
‘Py’ is true.

2. I p
y→2 is a y-variant of I p on which y refers to the number 2. Since the number

two has the property of being P, ‘Py’ is true on the y-variant interpretation I p
y→2.
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3. So, there is a y-variant of the interpretation I p on which ‘Py’ is true.

4. So, ‘(∃y)Py’ is true on the interpretation I p.

Moreover, both ‘(∀x)Px’ and ‘(∀y)Py’ have the same truth-value—false—on the inter-
pretation I p.

1. ‘(∀x)Px’ is true on the interpretationI p iff every x-variant ofI p is one onwhich
‘Px’ is true.

2. I p
x→1 is an x-variant of I p on which x refers to the number 1. Since the number

1 doesn’t have the property of being P, ‘Px’ is false on the x-variant interpretation
I p

x→1.

3. So, there is an x-variant of the interpretation I p on which ‘Px’ is false.

4. So, not every x-variant of I p is one which makes ‘Px’ true.

5. So, ‘(∀x)Px’ is false on the interpretation I p.

Similarly,

1. ‘(∀y)Py’ is true on the interpretationI p iff every y-variant ofI p is one onwhich
‘Py’ is true.

2. I p
y→1 is a y-variant of I p on which y refers to the number 1. Since the number

1 doesn’t have the property of being P, ‘Py’ is false on the y-variant interpretation
I p

x→1.

3. So, there is a y-variant of the interpretation I p on which ‘Py’ is false.

4. So, not every y-variant of I p is one which makes ‘Py’ true.

5. So, ‘(∀x)Py’ is false on the interpretation I p.

4.1.5 Notation

A bit of new notation. Let’s use expressions like

P[x], Q[x]

as variables ranging over the wffs of PL in which the variable x occurs freely (x is itself a
variable ranging over the variables of PL; it is not itself a part of the language PL). And
we’ll use expressions like

P[x→ t], Q[x→ t]
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to refer to the wffs of PL that you get when you replace every free occurrence of x in P[x]
and Q[x] with the term t. That is: given a wff P[x], you get the wff P[x → t] by going
through P[x], and every time x appears free, you swap it out for the term t.

Theword ‘free’ above is important. For instance, the following is not awff of PL in which
the variable y appears freely:

(∀y)(Py& Qy)

While the variable ‘y’ appears in this wff, it does not appear freely. Both times the vari-
able ‘y’ appears in ‘(∀y)(Py& Qy)’, it is bound by the universal quantifier ‘(∀y)’. Even
if a variable appears freely in a wff, that does not mean that every occurrence of that
variable is free. So, for instance, the variable ‘x’ appears twice in the wff

Fx ⊃ (∃x)Fx

However, while the first occurrence of ‘x’ is free, the second is not. The second occur-
rence of ‘x’ is bound by the existential quantifier ‘(∃x)’. Suppose that we use ‘P[x]’ to
stand for the wff ‘Fx ⊃ (∃x)Fx’.

P[x] = Fx ⊃ (∃x)Fx

Then, the expression ‘P[x → a]’ would refer to the wff ‘Fa ⊃ (∃x)Fx’, and not to the
wff ‘Fa ⊃ (∃x)Fa’.

P[x→ a] = Fa ⊃ (∃x)Fx

P[x→ a] , Fa ⊃ (∃x)Fa

4.2 PL-Validity

Let’s go back to the beginning. One of the logical notions we are attempting to theorize
about is the notion of an argument being deductively valid. We said that an argument
is just a collection of statements, one of which is designated as the conclusion, the re-
mainder of which are designated as the premises. And we said that an argument was
deductively valid if and only if there is no possibility in which the premises are all true,
yet the conclusion is false.

An argument is deductively valid if and only if there is no possiblity in
which the premises are all true while the conclusion is false.

In SL, we defined a corresponding notion of ‘SL-validity’ by swapping out the notion
of an argument with the notion of an SL-argument, and swapping out the notion of a
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possibility with the notion of a truth-value assignment. A truth-value assignment,
recall, was just an assignment of truth-value (either true or false), to all of the statement
letters of SL. We defined an SL-argument to just be a collection of wffs of SL, one of
which is designated the conclusion, the remainder of which are labeled the premises.

A SL-argument is a collection of wffs of SL, one of which is designated the
conclusion, and the others of which are designated the premises.

And we said that an SL-argument is SL-valid if and only if there is no truth-value as-
signment on which the premises are all true, yet the conclusion is false.

A SL-argument is SL-valid if and only if there is no truth-value assignment
in which all of its premises are true and its conclusion is false.

In PL, we will do the same thing, except that we will swap of the notion of an argument
with the notion of a PL-argument, and we will swap out the notion of a possibility with
the notion of a PL-interpretation. A PL-argument is just a collection of wffs of PL, one
of which is designated the conclusion, and the remainder of which are designated the
premises.

A PL-argument is a collection of wffs of PL, one of which is designated the
conclusion, and the others of which are designated the premises.

And a PL-argument is PL-valid if and only if there is no PL-interpretation whichmakes
all of its premises true while making its conclusion false.

A PL-argument is PL-valid if and only if there is no PL-interpretation
which makes all of its premises are true and its conclusion is false.

For instance, let’s show that the following inference, called universal instantiation (UI),
is PL-valid:

(∀x)P[x]

P[x→ a]

Pick any interpretation, I , which makes the premise, ⌜(∀x)P[x]⌝, true. In the inter-
pretation I , the constant ⌜a⌝ must refer to something in interpretation’s domain, D .
Call that thing—whatever it is—‘α’. Now, a wff of the form ⌜(∀x)P[x]⌝ is true on an
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interpretation I if and only if ⌜P[x]⌝ is true on every x-variant interpretation. Ix→α
is an x-variant of I . So, if ⌜(∀x)P[x]⌝’ is true on I , then ⌜P[x]⌝ must be true on
the variant interpretation Ix→α. But, on the variant interpretation Ix→α, ⌜x⌝ refers
to the very same thing as ⌜a⌝ refers to on the interpretation I —that is, α. Otherwise,
Ix→α is exactly the same as I . So, if ⌜P[x]⌝ is true on the interpretation Ix→α, then
⌜P[x→ a]⌝ must be true on the interpretation I .

Therefore, every PL-interpretation which makes a wff of the form ⌜(∀x)P[x]⌝ true
makes a wff of the form ⌜P[x → a]⌝ true as well. So UI is PL-valid. The kind of
informal proof I just provided is known as a semantic proof. I will have more to say
about these kinds of informal proofs below.

An argument of PL is PL-invalid if and only if it is not PL-valid. That is:

A PL-argument is PL-invalid if and only if there is some PL-interpretation
on which its premises are all true and its conclusions is false.

Wemay introduce the notion of a PL-counterexample. This is just a PL-interpretation
which makes all of the premises of a PL-argument true, yet makes its conclusion false.

A PL-counterexample to a PL-argument is a PL-interpretation on which
the argument’s premises are all true and its conclusion is false.

With this notion of a PL-counterexample in hand, we may give a simpler definition of
PL-validity and PL-invalidity. An argument of PL is PL-valid if and only if it has no
PL-counterexample. And it is PL-invalid if and only if it has a PL-counterexample.

An argument of PL is PL-valid if and only if it has no PL-counterexample.

An argument of PL is PL-invalid if and only if it has some PL-
counterexample.

Therefore, to show that an argument is PL-invalid, you can just provide a PL-counterexample.
That is: youmay just provide a PL-interpretation onwhich the premises of the argument
are true, yet the conclusion is false.

For instance, to show that the following argument is PL-invalid:

(∃x)Ax & (∃x)Bx

(∃x)(Ax & Bx)
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It suffices to provide the following (partial) PL-interpretation:

I p =


D = {1, 2}
A = {1}
B = {2}

Given this partial PL-interpretation, the premise of the above argument is true, yet its
conclusion is false. So, it provides a PL-counterexample to the validity of the argument
(∃x)Ax & (∃x)Bx // (∃x)(Ax & Bx).

4.3 ProvingPL-validity and themethodof Semantic Proof

Suppose that we wish to show that an argument of PL is PL-valid. Here is a way to do
that: we utilize the proof method known as reductio ad absurdum, or “proof by contra-
diction”. In a proof by contradiction, you assume the negation of the thing that you wish
to show, and derive a contradiction from it. Since you’ve shown that your assumption
leads to a contradiction, you can conclude that your assumption must be false.

Proof by Contradiction

Assume that P is false
...

Q

it is not the case that Q

Therefore, P

In the above, I’ve drawn scope lines to indicate that all of the reasoning taking place

where the ‘
... ’ occur is taking place under the assumption that P is false. However, we

need not include explicit scope lines when we are providing an informal proof. Never-
theless, we should keep in mind during such a proof which steps are taking place within
the scope of our assumption, and which are not.

We can utilize this proof technique to show that an argument is valid by supposing that
it is invalid and then deriving a contradiction. In deriving the contradiction, we will
have to make use of what we know about the semantics of the wffs of PL.

For instance, if we wish to show that ∼(∀x)Fx//(∃x)∼Fx is PL-valid, we could begin
by assuming that there is some interpretation which makes the premise true and the
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conclusion false, and then deriving a contradiction. We would proceed as follows:

1) Assume that there is some interpretation, I , which makes ‘∼(∀x)Fx’
true, but which makes ‘(∃x)∼Fx’ false.

2) Thus, I makes ‘(∀x)Fx’ false. [from (1) and the definition of ‘∼’]

3) ‘(∀x)Fx’ is false on the interpretation I if and only if there is some
x-variant of I which makes ‘Fx’ true. [by the definition of ‘∀’]

4) Therefore, there is some x-variant ofI —call it ‘Ix→α’—whichmakes
‘Fx’ false. [from (2) and (3)]

5) Ix→α makes ‘Fx’ false iff it makes ‘∼Fx’ true. [by the definition of
‘∼’]

6) So, Ix→α makes ‘∼Fx’ true. [by (4) and (5)]

7) So, there is an x-variant of the interpretation I which makes ‘∼Fx’
true. [from line (6)]

8) ‘(∃x)∼Fx’ false on the interpretation I [from line (1)]

9) ‘(∃x)∼Fx’ false on the interpretation I if and only if there is no x-
variant of the interpretation I which makes ‘∼Fx’ true. [from the
definition of ‘∃’]

10) So, there is no x-variant of the interpretation I which makes ‘∼Fx’
true. [from (8) and (9)].

11) But there is an x-variant of the interpretation I which makes ‘∼Fx’
true. [from (7)].

12) Because our assumption that there is some interpretation, I , which
makes ‘∼(∀x)Fx’ true, but which makes ‘(∃x)∼Fx’ false led to a con-
tradiction (lines (10) and (11)), that assumption must be false.

13) Therefore, there is no interpretation which makes ‘∼(∀x)Fx’ true, but
which makes ‘(∃x)∼Fx’ false. [from (12)]

14) Thus, ∼(∀x)Fx//(∃x)∼Fx is PL-valid [from (13) and the definition
of PL-validity]

The proof in the boxed text above is a semantic proof. It is similar to the kinds of deriva-
tions (or ‘deductions’) you learned about in phil 0500. It begins with an assumption,
and every step from there on out proceeds by citing the previous lines and certain facts
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about the semantics for PL. However, this is not a derivation within any formal system.
With these semantic proofs, we use reasoning techniques whichwemay be familiar with
from a formal derivation system to reason about the language PL itself.

4.4 Translations from PL into English

In order to translate from PL into English, wewill first need a (partial) PL-interpretation.
This interpretation will tell us the meanings of the predicates of PL as well as the con-
stants and (free) variables of PL. To refresh your memory, a partial PL-interpretation
will provide the following things:

A partial PL-interpretation, I p, of a wff or set of wffs of PL provides:

1. A specification of which things fall in the domain, D , of the interpre-
tation.

2. A specification of which things in the domain the constants appearing
in the wff or wffs of PL represent.

3. A specification of which things in the domain the free variables ap-
pearing in the wff or wffs of PL represent.

4. For every n-place predicate appearing in the wff or wffs of PL, a spec-
ification of the n-place property it represents.

4.4.1 Translating Atomic wffs of PL

Call a wff of PL ‘atomic’ iff it consists of only an n-place predicate followed by n terms.
Our partial interpretation will tell us which property or relation a given predicate of PL
represents, and it will tell us which objects in the domain the terms of PL refer to. We
translate atomic wffs of PL into English by just saying that the things denoted by the
terms have the property or bear the relation to one another denoted by the predicate.
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For instance, suppose that we have the following partial PL-interpretation:

I p =



D = the set of all concrete things in the Garden of Eden
a = Adam
e = Eve
p = the apple

Lxy = x loves y
Px = x has parents

Gxyz = x gave y to z

(Note: it’s important that the stuff referred to in the domain really exist—if you don’t
think that theGarden of Eden exists, then take us to be talking about the fiction inwhich
it does.) Then, the we may translate the following wffs of PL into English as follows:

Pa = Adam has parents.
Pe = Eve has parents.

Lae = Adam loves Eve
Laa = Adam loves himself

Gepa = Eve gave the apple to Adam.

Once we’ve translated the atomic wffs of PL, we know how to translate sentences in-
volving the atomic wffs and ∼, &,∨,⊃, and ≡. That’s what we learned how to do in SL.
So, on the partial PL-interpretation above, we can translate the following wffs of PL as
follows:

∼Pa = Adam doesn’t have parents.
∼(Pa∨ Pe) = Neither Adam nor Eve has parents.

Lae ≡ Lea = Adam loves Eve if and only if Eve loves Adam.
Laa ⊃ ∼Gapa = If Adam loves himself, then he doesn’t give the apple to himself

Gepa ⊃ ∼Gape = If Eve gave the apple to Adam, then Adam didn’t give the apple to Eve.

4.4.2 Translating Simple Quantified wffs of PL

We already know how to translate expressions involving the operators ∼, & , ∨, ⊃, and
≡ into English. What’s needed is a method for translating the quantifiers (∀x) and (∃x)
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into English. The following will do as a good translation guide in the simple case where
the quantifier scopes over a wff consisting of just an 1-place predicate followed by 1
bound variable.

(∀x)Fx −→ Everything (in the domain) is F .
(∃x)Fx −→ Something (in the domain) is F .

For instance, given the partial interpretation I p,

I p =

 D = the set of all works of art
Bx = x is beautiful

We can give the following translations from PL into English:

(∀y)By −→ Every work of art is beautiful.
(∃z)Bz −→ Some work of art is beautiful.

4.4.3 Translating More Complicated Quantified wffs of PL

Often, a quantified wff of PL will have a more complicated wff in its scope. There are
four kinds of quantified wffs of PL that you should be familiar with, and which you
should be able to translate from PL to English (and vice versa). These are known as the
A, E, I, and O sentence forms.

(∀x)(S x ⊃Px) −→ All S are P (A)
(∀x)(S x ⊃ ∼Px) −→ No S are P . (E)
(∃x)(S x & Px) −→ Some S are P . (I)

(∃x)(S x & ∼Px) −→ Some S are not P . (O)

Some S are P

To seewhy these wffs of PL translate into these English sentences, we should think about
how to represent the content of the English sentences in terms of Venn diagrams. The
way to represent a sentence of the form ‘Some S are P ’ with a Venn Diagram is as
shown in figure 4.2. That is, ⌜ Some S are P⌝ is true if and only if there is something
which is both S and P—i.e., if and only if there is something which is inside both of
the circles S and P . There will be something like that—call it ‘α’—if and only if there
is some x-variant interpretation Ix→α on which the wff ⌜S x & Px⌝ is true. But there
will be a x-variant interpretation Ix→α on which the wff ⌜S x & Px⌝ is true if and
only if ⌜(∃x)(S x & Px)⌝ is true, since (from above):
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Figure 4.2:

∃) A wff of the form ⌜(∃x)P⌝ is true on the interpretation I if there is some x-
variant interpretation Ix→α, where α is in the domain D of I , which makes P
true. Otherwise, it is false on the interpretation I .

So ⌜Some S are P⌝ is a good translation of ⌜(∃x)(S x & Px)⌝ (and vice versa).

Some S are not P

Next, consider ⌜Some S are not P⌝. The way to represent a sentence like this with a
Venn diagram is as shown in figure 4.3. That is, ⌜Some S are not P⌝ is true if and

Figure 4.3:

only if there is something which is S but not P—i.e., if and only if there is something
which is inside the circle S yet outside of the circle P . There will be something like
that—call it ‘α’—if and only if there is some x-variant interpretation Ix→α onwhich the
wff ⌜S x & ∼Px⌝ is true. But there will be a x-variant interpretation Ix→α on which
the wff ⌜S x & ∼Px⌝ is true if and only if ⌜(∃x)(S x & ∼Px)⌝ is true, since (again):

∃) A wff of the form ⌜(∃x)P⌝ is true on the interpretation I if there is some x-
variant interpretation Ix→α, where α is in the domain D of I , which makes P
true. Otherwise, it is false on the interpretation I .

So ⌜Some S are not P⌝ is a good translation of ⌜(∃x)(S x & ∼Px)⌝ (and vice versa).
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All S are P

Next, consider ⌜All S are P⌝. The way to represent a sentence like this with a Venn
diagram is as shown in figure 4.4. That is, ⌜All S are P⌝ is true if and only if there

Figure 4.4:

is nothing which is S but not P—i.e., if and only if there is nothing which is inside
the circle S yet outside of the circle P . Think about what it would take for this claim
to be false. This claim would be false if and only if there were something which were
S but not P . Otherwise, it would be true. Suppose that there were something—call it
‘α’—which were S but not P . Then, the wff of PL S x ⊃ S x would be false on the
x-variant interpretation Ix→α—since its antecedent is true, yet its consequent is false.
On the other hand, if anything β in the domain is either both S and P or not S , then
S x ⊃ Px would still be true on the variant interpretation Ix→β (by the definition of
‘⊃’).

So, there is somethingwhich isS and notP if and only if there is someα in the domain
such that S x ⊃Px is false when x refers to α.

So, there is something which is S and not P if and only if ⌜(∀x)(S x ⊃Px)⌝ is false,
since (from before):

∀) A wff of the form ⌜(∀x)P⌝ is true on the interpretation I if, for every α in the
domain of I , ⌜P⌝ is true on the x-variant interpretation Ix→α. Otherwise, it is
false on the interpretation I .

By the same token, if there is nothing which is S and not P , then ⌜(∀x)(S x ⊃Px)⌝

will be true, since ⌜S x ⊃Px⌝ will be true on all x-variant interpretations.

So ⌜All S are P⌝ is true in exactly the same circumstances as ⌜(∀x)(S x ⊃ Px)⌝.
So the former provides a good translation of the latter (and vice versa).
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No S are P

Finally, consider ⌜No S are P⌝. We saw that the way to represent a sentence like this
with a Venn diagram is as shown in figure 4.5. That is: the claim ⌜No S are P⌝ is

Figure 4.5:

true if and only if there is nothing which is both S and P . Think about the circum-
stances under which this claim would be false. It would be false if and only if there were
something—call it ‘α’—which were both S and P . Then, on the variant interpretation
Ix→α ⌜S x⌝ would be true and ⌜∼Px⌝ would be false. So ⌜S x ⊃ ∼Px⌝ would be
false (by the definition of ‘⊃’). So ⌜(∀x)(S x ⊃ ∼Px)⌝ would be false (since it is false
on the variant interpretation Ix→α).

If there were nothing which were both S and P , then ⌜No S are P⌝ would be true.
And, similarly, ⌜(∀x)(S x ⊃ ∼Px)⌝ would be true, since the only way that could be
false would be if there were an x-variant interpretation Ix→α which made

S x ⊃ ∼Px

false. But the above wff would be false on the x-variant interpretation Ix→α only if α
were both S and P—since that is the only thing that would make its antecedent true
and its consequent false.

So ⌜No S are P⌝ is true in exactly the same circumstances as ⌜(∀x)(S x ⊃ ∼Px)⌝.
So the former provides a good translation of the latter (and vice versa).

4.5 Translations from English into PL

The English expressions appearing in the translation guides from the previous section
constitute the canonical logical form of English. In general, if we have an English ex-
pression in canonical logical form, we may translate it into PL directly according to that
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translation schema:

Everything is F −→ (∀x)Fx
Something is F −→ (∃x)Fx
Some S are P −→ (∃x)(S x & Px)
Some S are not P −→ (∃x)(S x & ∼Px)
All S are P −→ (∀x)(S x ⊃Px)
No S are P −→ (∀x)(S x ⊃ ∼Px)

There are, however, other ways of translating these English sentences into PL. For in-
stance, given the following (partial) interpretation,

I p =


D = the set of all people
Rx = x is a Republican
S x = x is socially liberal

each of the following wffs of PL correctly translate the English sentence ‘Some Repub-
licans are socially liberal’.

Some Republicans are socially liberal −→

 (∃x)(Rx & S x)

∼(∀x)(Rx ⊃ ∼S x)

These wffs are PL-equivalent—they are true in all the same PL-interpretations and false
in all the same PL-interpretations.

Likewise, each of the following wffs correctly translate the English ‘Some Republicans
are not socially liberal’:

Some Republicans are not socially liberal −→

 (∃x)(Rx & ∼S x)

∼(∀x)(Rx ⊃ S x)

These wffs are PL-equivalent—they are true in all the same PL-interpretations and false
in all the same PL-interpretations.

Also, each of the following wffs of PL correctly translate the English sentence ‘No Re-
publicans are socially liberal’.

No Republicans are socially liberal −→

 (∀x)(Rx ⊃ ∼S x)

∼(∃x)(Rx & S x)

These wffs are PL-equivalent—they are true in all the same PL-interpretations and false
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in all the same PL-interpretations.

Similarly, each of the following wffs correctly translate the English ‘All Republicans are
socially liberal’:

All Republicans are socially liberal −→

 (∀x)(Rx ⊃ S x)

∼(∃x)(Rx & ∼S x)

These wffs are PL-equivalent—they are true in all the same PL-interpretations and false
in all the same PL-interpretations.

4.6 Overlapping Quantifiers and Relational Predicates

Wemay define PL-Equivalence in exactly the sameway that we defined SL-Equivalence,
except that, instead of focusing on truth-value assignments, as we did in SL,

Two wffs of SL, ⌜P⌝ and ⌜Q⌝, are SL-equivalent if and only if there is no
truth-value assignment on which ⌜P⌝ and ⌜Q⌝ have different truth-values.

wewill instead take the relevant notion of possibility to be given by PL-interpretations.
Thus:

Two wffs of PL, ⌜P⌝ and ⌜Q⌝, are PL-equivalent if and only if there is no
PL-interpretation on which ⌜P⌝ and ⌜Q⌝ have different truth-values.

Thus, if we wish to show that two wffs of PL are not PL-equivalent, it suffices to provide
a single PL-interpretation on which one of the wffs is true while the other is false.

Today, let’s consider whether changing the order of quantifiers or the order of bound
variables (or changing both) makes a difference to the meaning of wffs of PL by asking
whether two wffs which differ only in the order of their quantifiers, the order of their
bound variables, or both the order of their quantifiers and the order of their bound
variables, are PL-equivalent or not.



4.6. Overlapping Quantifiers and Relational Predicates 100

4.6.1 Changing the Order of the Quantifiers

Consider the following partial interpretation:

I p =

 D = {1, 2}
R = {< 1, 2 >,< 2, 1 >}

If you want a more familiar way to think about the relation R, you could think about it
like this:

Rxy = (x , y)

Thus, because 1 , 2 and 2 , 1, 1 bears the relation R to 2 and 2 bears the relation R to 1.
However, since 1 = 1 and 2 = 2, 1 does not bear the relation R to itself and 2 does not
bear the relation R to itself. However, the only thing we need to know about R is this: 1
bears it to 2, 2 bears it to 1, 1 doesn’t bear it to 1, and 2 doesn’t bear it to 2.

If it helps you, you can think about the relation R with the following picture:

1 2

R

R

In the picture, if a thing α shows up at the base of an arrow labeled ‘R’ and a thing β
shows up at the head of the arrow, then α bears the relation R to β. So, the above picture
just tells us that 1 bears the relation R to 2 and 2 bears the relation R to 1, and nothing
else bears the relation R to anything else.

Now consider the following two wffs of PL:

(∀x)(∃y)Rxy

(∃y)(∀x)Rxy

Let’s think about what these wffs say on the partial interpretation I p.
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(∀x)(∃y)Rxy

Start with ‘(∀x)(∃y)Rxy’. This wff is true iff ‘(∃y)Rxy’ is true on every x-variant of I p.
There are two x-variants of I p:

I p
x→1 =


D = {1, 2}
x = 1

R = {< 1, 2 >,< 2, 1 >}
and I p

x→2 =


D = {1, 2}
x = 2

R = {< 1, 2 >,< 2, 1 >}

Start with I p
x→1. Is ‘(∃y)Rxy’ true on this partial interpretation? Well, ‘(∃y)Rxy’ is

true according to I p
x→1 if and only if ‘Rxy’ is true according to some y-variant of the

interpretation I p
x→1. There are two y-variants of this interpretation:

I p
x→1,y→1 =


D = {1, 2}
x = 1

y = 1

R = {< 1, 2 >,< 2, 1 >}

and I p
x→1,y→2 =


D = {1, 2}
x = 1

y = 2

R = {< 1, 2 >,< 2, 1 >}

On the first, I p
x→1,y→1, ‘Rxy’ is false, since 1 does not bear the relation R to itself. On the

second, I p
x→1,y→2, ‘Rxy’ is true, since 1 does bear the relation R to 2. All that matters,

however, is that ‘Rxy’ is true on at least one of these interpretations. Since it is, ‘(∃y)Rxy’
is true on the interpretation I p

x→1.

What about the second x-variant interpretation I p
x→2? Well, ‘(∃y)Rxy’ is true on this

interpretation iff ‘Rxy’ is true on some y-variant of it. There are two y-variants of this
interpretation:

I p
x→2,y→1 =


D = {1, 2}
x = 2

y = 1

R = {< 1, 2 >,< 2, 1 >}

and I p
x→2,y→2 =


D = {1, 2}
x = 2

y = 2

R = {< 1, 2 >,< 2, 1 >}

On the first, I p
x→2,y→1, ‘Rxy’ is true, since 2 bears the relation R to 1. On the second,

I p
x→2,y→2, ‘Rxy’ is false, since 2 does not bear the relation R to itself. All that matters,

however, is that ‘Rxy’ is true at at least one y-variant of the interpretation I p
x→2. Since

it is, ‘(∃y)Rxy’ is true on the interpretation ‘I p
x→2.

Thus, ‘(∃y)Rxy’ is true on the interpretation I p
x→1 and ‘(∃y)Rxy’ is true on the inter-

pretation I p
x→2. Thus, ‘(∃y)Rxy’ is true on every x-variant of I p. Thus, ‘(∀x)(∃y)Rxy’

is true on the interpretation I p.
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(∃y)(∀x)Rxy

Now let’s think about the wff ‘(∃y)(∀x)Rxy’. This wff is exactly like the last wff we
considered—‘(∀x)(∃y)Rxy’—except that we have swapped the order of the universal
and the existential quantifiers. Does this make a difference to the truth-value of the
wff? Let us check and see.

‘(∃y)(∀x)Rxy’ is true on I p if and only if ‘(∀x)Rxy’ is true on some y-variant of I p.
There are two y-variants of I p:

I p
y→1 =


D = {1, 2}
y = 1

R = {< 1, 2 >,< 2, 1 >}
and I p

y→2 =


D = {1, 2}
y = 2

R = {< 1, 2 >,< 2, 1 >}

Let’s startwith the first—I p
y→1. Is ‘(∀x)Rxy’ true on this interpretation? Well, ‘(∀x)Rxy’

is true on I p
y→1 iff ‘Rxy’ is true on every x-variant of I p

y→1. There are two x-variants of
I p
y→1:

I p
y→1,x→1 =


D = {1, 2}
y = 1

x = 1

R = {< 1, 2 >,< 2, 1 >}

and I p
y→1,x→2 =


D = {1, 2}
y = 1

x = 2

R = {< 1, 2 >,< 2, 1 >}

On I p
y→1,x→1, Rxy is false, since 1 does not bear the relation R to itself. Thus, there is

some x-variant of I p
y→1 on which ‘Rxy’ is false. So it is not the case that ‘Rxy’ is true on

every x-variant of I p
y→1. So ‘(∀x)Rxy’ is false on the interpretation I p

y→1.

This doesn’t yet show that ‘(∃y)(∀x)Rxy’ is false on the interpretation I p, since all that
it takes for this wff to be true on I p is for there to be some y-variant of it on which
‘(∀x)Rxy’ is true. So let us consider the second y-variant interpretation: I p

y→2.

‘(∀x)Rxy’ is true onI p
y→2 iff ‘Rxy’ is true on every x-variant of this interpretation. There

are two x-variants of this interpretation:

I p
y→2,x→1 =


D = {1, 2}
y = 2

x = 1

R = {< 1, 2 >,< 2, 1 >}

and I p
y→2,x→2 =


D = {1, 2}
y = 2

x = 2

R = {< 1, 2 >,< 2, 1 >}

On the first, ‘Rxy’ is true, since 2 does bear the relation R to 1. However, on the second,
‘Rxy’ is false, since 2 does not bear the relation R to itself. Thus, ‘Rxy’ is not true on
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every x-variant of I p
y→2. So ‘(∀x)Rxy’ is false on the interpretation I p

y→2.

Therefore, ‘(∀x)Rxy’ is false on every y-variant of I p. So ‘(∃y)(∀x)Rxy’ is false on the
interpretation I p.

So, I p is an interpretation on which ‘(∀x)(∃y)Rxy’ is true, yet ‘(∃y)(∀x)Rxy’ is false.
So ‘(∀x)(∃y)Rxy’ and ‘(∃y)(∀x)Rxy’ are not PL-equivalent. So the order of the quan-
tifiers does make a difference to the meaning of a quantified wff of PL.

Translating ‘(∀x)(∃y)Rxy’ and ‘(∃y)(∀x)Rxy’

On the interpretation I p, the first wff, ‘(∀x)(∃y)Rxy’, says ‘Every number in the do-
main has some number in the domain that it’s distinct from (not identical to)’. And this
is true: 1 is distinct from 2, and 2 is distinct from 1. So every number in the domain
has some number in the domain that it’s distinct from.

On the same interpretation, the second wff, ‘(∃y)(∀x)Rxy’ says ‘There’s some number
in the domain which is distinct from every number in the domain’. However, this is
false. 1 is not distinct from itself, so 1 is not distinct from every number in the domain.
And 2 is not distinct from itself, so 2 is not distinct from every number in the domain.
So there is no number which is distinct from every number in the domain.

Consider the following (partial) interpretation:

I p =

 D = the set of all people
Axy = x admires y

And consider the following two wffs:

(∀x)(∃y)Axy

(∃y)(∀x)Axy

The first wff says that everybody has somebody that they admire. The second wff says
that somebody is such that everybody admires them. Now, suppose that everybody ad-
mires their parents and nobody else. Then, the first wff would be true (since everybody
does have somebody they admire—namely, their parents). However, the second wff
would be false (since there is nobody who is everybody’s parents, there is nobody who
everybody admires).

The lesson: changing the order of the quantifiers can make a difference to the meaning
and the truth-value of a wff of PL.
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4.6.2 Changing the Order of the Bound Variables

What about changing the order of the bound variables? Does that make a difference to
the truth-value of a wff like ‘(∀x)(∃y)Rxy’? It does. Consider the following pair of wffs:

(∀x)(∃y)Rxy

(∀x)(∃y)Ryx

If wewish to show that these twowffs have a differentmeaning—that is, that they are not
PL-equivalent—then it suffices to provide a single (partial) PL-interpretation on which
the wffs have different truth-values. Consider the following (partial) interpretation:

I p =

 D = {1, 2}
R = {< 1, 1 >,< 2, 1 >}

If you want a more familiar way to think about the relation R, you could think about it
like this:

Rxy = (x × y = x)

Thus, because 1 × 1 = 1 and 2 × 1 = 2, 1 bears the relation R to itself and 2 bears the
relation R to 1. However, since 1 × 2 , 1 and 2 × 2 , 2, 1 does not bear the relation
R to 2 and 2 does not bear the relation R to itself. However, the only thing we need to
know about R is this: 1 bears it to 1, 2 bears it to 1, 1 doesn’t bear it to 2, and 2 doesn’t
bear it to 2.

If it helps you, you can think about the relation R with the following picture:

1 2

R

R

(∀x)(∃y)Rxy

‘(∀x)(∃y)Rxy’ is true on the interpretation I p iff ‘(∃y)Rxy’ is true on every x-variant
of I p. There are two x-variants of I p:

I p
x→1 =


D = {1, 2}
x = 1

R = {< 1, 1 >,< 2, 1 >}
and I p

x→2 =


D = {1, 2}
x = 2

R = {< 1, 1 >,< 2, 1 >}
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Take I p
x→1 first. ‘(∃y)Rxy’ is true on I p

x→1 iff ‘Rxy’ is true on some y-variant of I p
x→1.

Consider, however, the following y-variant of I p
x→1:

I p
x→1,y→1 =


D = {1, 2}
x = 1

y = 1

R = {< 1, 1 >,< 2, 1 >}

On this interpretation, ‘Rxy’ is true, since 1 bears the relation R to itself. Thus, ‘Rxy’ is
true on some y-variant of the interpretation I p

x→1. So ‘(∃y)Rxy’ is true on I p
x→1.

Consider next the x-variant interpretation I p
x→2. ‘(∃y)Rxy’ is true on I p

x→2 iff ‘Rxy’ is
true on some y-variant of I p

x→2. Consider, however, the following y-variant of I p
x→2:

I p
x→2,y→1 =


D = {1, 2}
x = 2

y = 1

R = {< 1, 1 >,< 2, 1 >}

‘Rxy’ is true on this interpretation, since 2 bears the relation R to 1. Thus, ‘Rxy’ is true
on some y-variant of I p

x→2. So ‘(∃y)Rxy’ is true on the interpretation I p
x→2.

Therefore, ‘(∃y)Rxy’ is true on every x-variant of the interpretationI p. So ‘(∀x)(∃y)Rxy’
is true on the interpretation I p.

(∀x)(∃y)Ryx

Consider next the wff ‘(∀x)(∃y)Ryx’. This wff is true on the interpretation I p iff
‘(∃y)Ryx’ is true on every x-variant of I p. As before, there are two x-variants of I p:

I p
x→1 =


D = {1, 2}
x = 1

R = {< 1, 1 >,< 2, 1 >}
and I p

x→2 =


D = {1, 2}
x = 2

R = {< 1, 1 >,< 2, 1 >}
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Let’s start with the second, I p
x→2. ‘(∃y)Ryx’ is true on this interpretation iff ‘Ryx’ is true

on some y-variant of I p
x→2. There are two y-variants of I p

x→2:

I p
x→2,y→1 =


D = {1, 2}
x = 2

y = 1

R = {< 1, 1 >,< 2, 1 >}

and I p
x→2,y→2 =


D = {1, 2}
x = 2

y = 2

R = {< 1, 1 >,< 2, 1 >}

On the first—I p
x→2,y→1—‘Ryx’ is false, since 1 does not bear the relation R to 2. On the

second—I p
x→2,y→2, ‘Ryx’ is false, since 2 does not bear the relation R to itself.

Thus, ‘Ryx’ is not true on any y-variant of I p
x→2. So ‘(∃y)Ryx’ is not true on the in-

terpretation I p
x→2. So ‘(∃y)Ryx’ is not true on every x-variant of I p. Therefore,

‘(∀x)(∃y)Ryx’ is not true on the interpretation I p.

Therefore, on the interpretation I p, ‘(∀x)(∃y)Rxy’ is true, yet ‘(∀x)(∃y)Ryx’ is false.
So these wffs are not PL-equivalent. So, they mean different things in PL.

4.6.3 Translating ‘(∀x)(∃y)Rxy’ and ‘(∀x)(∃y)Ryx’

‘(∀x)(∃y)Rxy’, translated into English, says that everything in the domain bears the
relation R to something in the domain. ‘(∀x)(∃y)Ryx’, on the other hand, says that
everything in the domain is borne the relation R by something in the domain. Because,
in the interpretation above, everything does bear the relation R to something—1 bears
it to 1 and 2 bears it to 1—this claim is true. However, in the interpretation above, it is
false that everything in the domain is borne the relation R by something. Nothing bears
the relation R to 2. So the claim that everything in the domain is borne R by something
is false.

Consider the following partial interpretation:

I p =

 D = the set of all people
Pxy = x is the biological parent of y

(In order to not worry about who the first people were, or whether they had parents, let’s
just suppose that there have been an infinite number of people and that every person has
two biological parents, though not every person has children of their own.)

Then, ‘(∀x)(∃y)Pxy’ says that everybody is the parent of somebody. However, this is
false, since not everybody has children. Those people don’t have anybody that they are
the parent of, so it is false that everybody is the parent of somebody.
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‘(∀x)(∃y)Pyx’, on the other hand, says that everybodyhas somebodywho is their parent—
that is, that everybody has a parent. And that is true. So ‘(∀x)(∃y)Pxy’ can be false
while ‘(∀x)(∃y)Pyx’ is true. So, those wffs are not PL-equivalent.

The lesson: changing the order of the bound variables can make a difference to the
meaning and the truth-value of the wffs of PL.

4.6.4 Changing the Order of the Quantifiers and the Order of the
Bound Variables

Suppose that, when we change the order of the quantifiers, we change the order of the
bound variables as well. Then will we get a pair of wffs which are PL-equivalent? That
is: are the following wffs of PL PL-equivalent?

(∀x)(∃y)Rxy

(∃y)(∀x)Ryx

The answer is ‘no’. The first wff says that everything bears the relation R to something.
The second wff says that something bears the relation R to everything. But either of
these could be true without the other being true. Consider the following (partial) PL-
interpretation.

I p =

 D = {1, 2}
R = {< 1, 1 >,< 1, 2 >} 1 2

R

R

On this interpretation, 2 does not bear the relation R to anything in the domain. So
‘(∀x)(∃y)Rxy’ is false, since not everything bears the relation R to something. That
is: since ‘Rxy’ is false on both the variant interpretations I p

x→2,y→1 and I p
x→2,y→2,

‘(∃y)Rxy’ is false on the x-variant interpretation I p
x→2. And if ‘(∃y)Rxy’ is false on

some x-variant of the interpretation I p, then ‘(∀x)(∃y)Rxy’ is false on I p.

Nevertheless, ‘(∃y)(∀x)Ryx’ is true, since something (namely, 1) does bear the relation
R to everything. That is: ‘Ryx’ is true on both I p

y→1,x→1 and I p
y→1,x→2. Therefore,

‘(∀x)Ryx’ is true on I p
y→1. And if ‘(∀x)Ryx’ is true on some y-variant of I p, then

‘(∃y)(∀x)Ryx’ is true on the interpretation I p.

To see that ‘(∀x)(∃y)Rxy’ can be true while ‘(∃y)(∀x)Ryx’ is false, consider the follow-
ing interpretation:
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I p =

 D = {1, 2}
R = {< 1, 1 >,< 2, 2 >} 1 2

RR

Here, ‘(∀x)(∃y)Rxy’ is true, since everything bears the relation R to something. 1 bears
the relation R to itself, and 2 bears the relation R to itself. That is: ‘Rxy’ is true on the
interpretation I p

x→1,y→1, so ‘(∃y)Rxy’ is true on the interpretation I p
x→1. And ‘Rxy’ is

true on the interpretation I p
x→2,y→2, so ‘(∃y)Rxy’ is true on the interpretation I p

x→2.
So ‘(∃y)Rxy’ is true on every x-variant of the interpretation I p. So ‘(∀x)(∃y)Rxy’ is
true on the interpretation I p.

Nevertheless, ‘(∃y)(∀x)Ryx’ is false on this interpretation. For ‘Ryx’ is false on the in-
terpretation I p

y→1,x→2, so ‘(∀x)Ryx’ is false on the interpretation I p
y→1, and ‘Ryx’ is

false on the interpretation I p
y→2,x→1, so ‘(∀x)Ryx’ is false on the interpretation I p

y→2.
So ‘(∀x)Ryx’ is false on every y-variant of the interpretation I p. So ‘(∃y)(∀x)Ryx’ is
false on the interpretation I p.



Chapter 5

Predicate Logic Trees

5.1 Notation and Terminology

A bit of review: recall that we are using expressions like

P[x→ t], Q[x→ t]

to refer to the wffs of PL that you get when you replace every free occurrence of ⌜x⌝ in
⌜P⌝ and ⌜Q⌝ with the term ⌜t⌝. That is: given a wff ⌜P⌝, you get the wff ⌜P[x→ t]⌝ by
going through ⌜P⌝, and every time ⌜x⌝ appears free, you swap it out for the term ⌜t⌝.

Also, a bit of terminology: If ⌜a⌝ is a constant, then we will refer to ⌜P[x → a]⌝ as a
substitution instance of the quantified wffs ⌜(∀x)P⌝ and ⌜(∃x)P⌝.

Thus, ‘Pa ⊃ Qa’ is a substitution instance of the wff ‘(∀z)(Pz ⊃ Qz)’ and ‘Pk & (∀y)S ky’
is a substitution instance of the wff ‘(∃x)(Px & (∀y)S xy)’

Here’s a special case. Consider the wff

(∀x)(∃x)Px

When we remove the universal quantifier ‘(∀x)’, there are no free occurrences of ‘x’ in
the wff that we have left behind. So, we needn’t replace any free occurrences of ‘x’ with
any constant. Therefore,

(∃x)Px

Is a substitution instance of ‘(∀x)(∃x)Px’.

109
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5.2 Predicate Logic Trees

We’re now going to learn about a procedure for testing the consistency of sets of wffs of
PL. This procedure is going to be very similar to the one that we learned about for SL.
In fact, we will simply take all of the tree rules from SL and add to it four new rules. To
refresh your memory, here are all of the rules from SL:

(∨)

P∨Q ✓

P Q

(&)

P & Q ✓

P
Q

(⊃)

P ⊃ Q ✓

∼P Q

(≡)

P ≡ Q ✓

P
Q

∼P
∼Q

(∼∼)

∼∼P ✓

P

(∼∨)

∼(P∨Q) ✓

∼P
∼Q

(∼&)

∼(P & Q) ✓

∼P ∼Q

(∼ ⊃)

∼(P ⊃ Q) ✓

P
∼Q

(∼ ≡)

∼(P ≡ Q) ✓

P
∼Q

∼P
Q

(×)

P

∼P
×
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All of these rules may be applied to wffs of PL just as well as they were applied to wffs
of SL. For instance, the following will be a correct PL tree:

Pab ⊃ ∼F j ✓
F j

Pab

∼Pab
×

∼F j
×

To these ten rules, we will add four more. The first rule we will learn about will for be
wffs whose main operator is the universal quantifier, ⌜(∀x)⌝.

5.2.1 Rule for Universally Quantified Wffs

Here is the rule for wffs of the form ⌜(∀x)P⌝:

(∀)

(∀x)P t

P[x→ t]

for any constant or free variable t

Here’s how to read this rule: if you have a wff of the form ⌜(∀x)P⌝ appearing at some
point on an open branch, then you may place any constant ⌜t⌝ in a circle next to the wff
⌜(∀x)P⌝, and write down the substitution instance ⌜P[x→ t]⌝ at the end of every open
branch on which ⌜(∀x)P⌝ appears.

Note: you do not check off the universally quantified wff ⌜(∀x)P⌝. You may have to
write down multiple substitution instances of this wff before you are done. Thus, you
may end up writing many terms in circles next to the universally quantified wff.

For instance, consider the tree with the wffs ‘(∀x)∼Px’ and ‘Pa∨ Pb’ at its root:

(∀x)∼Px
Pa∨ Pb

Let’s begin with the disjunction ‘Pa ∨ Pb’. The rule for (∨) tell us that we may place a
checkmark next to this wff, branch the tree, and write ‘Pa’ on the left side and write ‘Pb’
on the right.
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(∀x)∼Px
Pa∨ Pb ✓

Pa Pb

Now, we only have the universally quantified wff to work with. We cannot check it off,
but we can write down substitution instances of it. We could choose to instantiate any
constant we like, but we should be judicious in our choice of constant. In particular, it
makes sense to use the constants that already appear on the same branch as ‘(∀x)∼Px’.
Let’s start with ‘a’.

(∀x)∼Px a
Pa∨ Pb ✓

Pa

∼Pa
×

Pb

∼Pa

Since ‘Pa’ and ‘∼Pa’ appear on the same branch, that branch closes, by rule (×).

Now, we’ve already applied a rule to every wff which is not an atomic wff or the nega-
tion of an atomic wff. Does that mean that we are done? No. Though we applied a
rule to ‘(∀x)∼Px’, we did not check it off. It may still have rules applied to it. We may
additionally instantiate the constant ‘b’, as so:

(∀x)∼Px a b
Pa∨ Pb ✓

Pa

∼Pa
×

Pb

∼Pa

∼Pb
×

Since ‘Pb’ and ‘∼Pb’ appear on the same branch, that branch closes.

This particular tree closes, but not every tree with a universally quantified wff will close.
Consider, for instance, the tree with the wffs ‘(∀x)(Px ⊃ Qx)’ and ‘Pa’ at its root:

(∀x)(Px ⊃ Qx)
Pa

Since ‘a’ appears on this tree, it makes sense to begin by instantiating the constant ‘a’, as
so:
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(∀x)(Px ⊃ Qx) a
Pa

Pa ⊃ Qa

We may then apply the rule for (⊃) to get:

(∀x)(Px ⊃ Qx) a
Pa

Pa ⊃ Qa ✓

∼Pa
×

Qa

This tree hasn’t yet closed, but we haven’t checked off every wff, since we never check off
a universally quantified wff. We could still, if we wished, apply the rule (∀) to the wff
‘(∀x)(Px ⊃ Qx)’ by instantiating a different constant, for instance, ‘b’:

(∀x)(Px ⊃ Qx) a b
Pa

Pa ⊃ Qa ✓

∼Pa
×

Qa

Pb ⊃ Qb

Since there are an infinite number of terms of PL, we could go on doing this forever. That
means that we will have to alter our definition of what it is for a tree to remain open.
Our new definition will say that, if we have applied the rule (∀) by instantiating every
constant or free variable which appears on an open branch with a universally quantified
wff ⌜(∀x)P⌝, thenwe are done. If a branch of the tree containing a universally quantified
wff ⌜(∀x)P⌝ remains open after instantiating every constant or free variable appearing
on that branch, then the tree remains open.



5.2. Predicate Logic Trees 114

To complete a tree:

1. Apply the relevant rules to all wffs appearing on open branches, in any
order you like.

2. If a wff ⌜P⌝ and its negation ⌜∼P⌝ appear on the same branch, then
close that branch by writing ‘×’ at the bottom of the branch.

3. If every branch closes, then you are done; in this case, we say that the
tree closes.

4. If you have applied every relevant rule to every wff on every open
branch which is not atomic or the negation of an atomic wff, and, you
have applied the rule (∀) to every universally quantified wff appear-
ing on an open branch by instantiating every constant or free variable
which appears on an open branchwith that universally quantifiedwff ,
then you are done; if, after doing this, there remains an open branch,
then we say that the tree remains open.

Note that we must still apply every relevant rule to every wff on the tree which is not
atomic or a negation of an atomic wff. That means that, even if there are no constants or
free variables appearing on an open branchwith a wff of the form ⌜(∀x)P⌝, wemust still
apply the rule (∀) to that wff by instantiating some new term in that wff. For instance,
consider the tree beginning with ‘(∀x)(Fx ⊃ (∀y)Fy)’. There are no constants or free
variables appearing in thatwff. Nevertheless, wemust still apply a rule to it, whichmeans
that we must pick some new term—say ‘c’—and write down a substitution instance of
‘(∀x)(Fx ⊃ (∀y)Fy)’, as so:

(∀x)(Fx ⊃ (∀y)Fy) c

Fc ⊃ (∀y)Fy

We may now apply the rule for (⊃) as follows.

(∀x)(Fx ⊃ (∀y)Fy) c

Fc ⊃ (∀y)Fy ✓

∼Fc (∀y)Fy

We must apply the rule (∀) to ‘(∀y)Fy’. However, since the constant ‘c’ appears on the
same branch as ‘(∀y)Fy’, we do not need to select a new instantiating constant. We may
simply instantiate ‘c’, as follows.
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(∀x)(Fx ⊃ (∀y)Fy) c

Fc ⊃ (∀y)Fy ✓

∼Fc
#

(∀y)Fy c

Fc
#

At this point, we have applied the relevant rule to every wff appearing on every open
branch of the tree, and, for every universally quantifiedwff appearing on an open branch
of the tree and every constant or free variable appearing on that branch, we have instan-
tiated that universally quantified wff with that constant or free variable. So, we are done
with the tree. Since a branch remains open, the tree remains open.

5.2.2 Rule for Existentially Quantified Wffs

The rule for existentially quantified wffs—wffs of the form ⌜(∃x)P⌝—is given below.

(∃)

(∃x)P ✓

P[x→ a]

for some constant a which does
not appear on the same branch as
⌜(∃x)P⌝

Here’s how to read this rule: if you have a wff of the form ⌜(∃x)P⌝ appearing on an open
branch of the tree, then you may, at any time you like, pick an entirely new constant,
⌜a⌝—one which does not appear on the same branch as ⌜(∃x)P⌝—and write down the
substitution instance P[x→ a].

For instance, consider a tree with the wffs ‘(∀x)Fx’ and ‘(∃x)∼Fx’ at its root.

(∀x)Fx
(∃x)∼Fx

We may apply the rule (∃) to the wff ‘(∃x)∼Fx’ by checking it off and writing down a
substitution instance of it. When we do so, we must choose an entirely new constant—
one which does not appear elsewhere on the branch. Here, we could choose any constant,
since no constants currently appear on the tree. Let’s choose the constant ‘ j’:
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(∀x)Fx
(∃x)∼Fx ✓

∼F j

Before we are done with the tree, we must also apply the rule (∀) to ‘(∀x)Fx’ by instan-
tiating every constant or free variable which appears on the same branch as it. Now,
‘ j’ appears on the same branch as ‘(∀x)Fx’, so we must instantiate the constant ‘ j’, as
shown:

(∀x)Fx j
(∃x)∼Fx ✓

∼F j

F j
×

Consider next the tree beginning with ‘(∀x)(Fx ⊃ Gx)’ and ‘(∃y)(Fy& ∼Gy)’ at its
root:

(∀x)(Fx ⊃ Gx)
(∃y)(Fy& ∼Gy)

We could start by instantiating the wff ‘(∀x)(Fx ⊃ Gx)’. However, in general, it’s a good
idea to start by applying the rule (∃) before applying the rule (∀), so I’ll do that here.
I’ll pick an entirely new constant—let’s go with ‘k’—and write down the substitution
instance ‘Fk & ∼Gy’ of ‘(∃y)(Fy& ∼Gy)’.

(∀x)(Fx ⊃ Gx)
(∃y)(Fy& ∼Gy) ✓

Fk & ∼Gk

Applying the rule (&) gives us:

(∀x)(Fx ⊃ Gx)
(∃y)(Fy& ∼Gy) ✓

Fk & ∼Gk ✓

Fk
∼Gk

Now, we need to apply the rule (∀) to ‘(∀x)(Fx ⊃ Gx)’. We could pick any constant to
instantiate we like, but we won’t be done with the tree until we instantiate the constant
‘k’, so it makes sense to start with ‘k’:
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(∀x)(Fx ⊃ Gx) k
(∃y)(Fy& ∼Gy) ✓

Fk & ∼Gk ✓

Fk
∼Gk

Fk ⊃ Gk

When we apply the rule (⊃) to ‘Fk ⊃ Gk’, the tree closes:

(∀x)(Fx ⊃ Gx) k
(∃y)(Fy& ∼Gy) ✓

Fk & ∼Gk ✓

Fk
∼Gk

Fk ⊃ Gk ✓

∼Fk
×

Gk
×

5.2.3 Rules for Negations of Quantified Wffs

Suppose that we have a wff which is the negation of a universally or existentially quanti-
fied wff. That is, suppose that we have a wff of the form ⌜∼(∀x)P⌝ or ⌜∼(∃x)P⌝. Then,
the following rules tell us that we may, at any time, place a check next to this wff, push
the negation in past the quantifier, and swap the universal quantifier with an existential
quantifier; or, alternatively, swap the existential quantifier with a universal quantifier.

(∼∀)

∼(∀x)P ✓

(∃x)∼P

(∼∃)

∼(∃x)P ✓

(∀x)∼P

For instance, consider the tree with the wffs ‘(∀y)(Ty ⊃ Uy)’, ‘∼(∀x)Uz’, and ‘(∀x)T x’
at its root:
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(∀y)(Ty ⊃ Uy)
∼(∀z)Uz
(∀x)T x

We may apply the rule (∼∀) to ‘∼(∀z)Uz’ by checking off ‘∼(∀z)Uz’ and writing down
‘(∃z)∼Uz’, as shown:

(∀y)(Ty ⊃ Uy)
∼(∀z)Uz ✓
(∀x)T x

(∃z)∼Uz

We may then apply the rule (∃) to ‘(∃z)∼Uz’, as shown:

(∀y)(Ty ⊃ Uy)
∼(∀z)Uz ✓
(∀x)T x

(∃z)∼Uz ✓

∼Uk

Next, we may apply the rule (∀) to ‘(∀y)(Ty ⊃ Uy)’ by instantiating that universally
quantified wff with the constant ‘k’:

(∀y)(Ty ⊃ Uy) k
∼(∀z)Uz ✓
(∀x)T x

(∃z)∼Uz ✓

∼Uk

Tk ⊃ Uk

And we may apply the rule (∀) to ‘(∀x)T x’ by instantiating that universally quantified
wff with the constant ‘k’:
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(∀y)(Ty ⊃ Uy) k
∼(∀z)Uz ✓
(∀x)T x k

(∃z)∼Uz ✓

∼Uk

Tk ⊃ Uk

Tk

When we apply the rule for (⊃), the tree closes.

(∀y)(Ty ⊃ Uy) k
∼(∀z)Uz ✓
(∀x)T x k

(∃z)∼Uz ✓

∼Uk

Tk ⊃ Uk ✓

Tk

∼Tk
×

Uk
×

5.3 Strategies for Applying Rules

As with SL, we may apply rules in any order; and, consequently, there are multiple cor-
rect trees for any given root. The following are some rough-and-ready guidelines to
follow to keep your trees as tidy as possible:

1. All else being equal, apply non-branching rules first.

2. All else being equal, apply rules to wffs which will lead to at least some branches
closing before applying the rules to wffs which will not.

3. All else being equal, apply rules to wffs of the form ⌜(∃x)P⌝ and ⌜∼(∀x)P⌝ before
applying them to wffs of the form ⌜(∀x)P⌝ and ⌜∼(∃x)P⌝.

4. All else being equal, when applying the rule (∀), try to choose instantiating con-
stants which will lead to branches closing before instantiating constants which
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will leave all branches open.

5. All else being equal, work on longer wffs first.

5.4 Sample Predicate Logic Trees

Here are some sample PL trees:

(∀x)(∀y)(Lxy ⊃ Lyx) a
(∃x)(∀y)Lxy ✓
(∃x)(∀y)∼Lxy ✓

(∀y)Lay b

(∀y)∼Lby a

(∀y)(Lay ⊃ Lya) b

Lab ⊃ Lba ✓

Lab

∼Lba

∼Lab
×

Lba
×

∼[(∀y)Lyy∨ (∃x)∼Lxx] ✓

∼(∀y)Lyy ✓
∼(∃x)∼Lxx ✓

(∃x)∼Lyy ✓

(∀x) ∼ ∼Lxx a

∼Laa

∼ ∼Laa
×
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∼(∃x)(Fx ⊃ (∀y)Fy) ✓

(∀x)∼(Fx ⊃ (∀y)Fy) a b

∼(Fa ⊃ (∀y)Fy) ✓

Fa
∼(∀y)Fy ✓

(∃y)∼Fy ✓

∼Fb

∼(Fb ⊃ (∀y)Fy) ✓

Fb
∼(∀y)Fy
×

5.5 Logical Properties of PL

Just as we did with S L trees, we can use PL trees to test for all the logical properties that
we are interested in. Just to remind you, the family of logical properties we are interested
in exploring are defined below and summarized in figure 6.4.

PL Validity A PL argument is PL valid iff there is no PL interpretation on which
the premises are all true while the conclusion is false.

PL Invalidity A PL argument is PL invalid iff there is some PL interpretation on
which the premises are all true while the conclusion is false.

PL Consistency A set of wffs of PL { ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N} is PL consistent iff there
is some PL interpretation on which ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N are all true.

PL Inconsistency A set of wffs of PL { ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N} is PL inconsistent iff
there is no PL interpretation on which ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N are all true.

PL Equivalence A pair of wffs of PL, ⌜A⌝ and ⌜B⌝, are PL equivalent iff ⌜A⌝

and ⌜B⌝ are true in all the same PL interpretations and false in all the same PL
interpretations (i.e., iff there is no PL interpretation on which ⌜A⌝ and ⌜B⌝ have
different truth-values).
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PL Tautology A wff of PL ⌜A⌝ is a PL tautology iff there is no PL interpretation
on which ⌜A⌝ is false (i.e., iff ⌜A⌝ is true on every PL interpretation).

PL Contradiction A wff of PL ⌜A⌝ is a PL contradiction iff there is no PL inter-
pretation on which ⌜A⌝ is true (i.e., iff ⌜A⌝ is false on every PL interpretation).

PL Contingency A wff of PL ⌜A⌝ is a PL contingency iff there is some PL in-
terpretation on which ⌜A⌝ is true and some PL interpretation on which ⌜A⌝ is
false.

Logical Property of PL Applies Only To
PL Validity PL arguments
PL Invalidity PL arguments
PL Tautology individual wffs of PL
PL Contradiction individual wffs of PL
PL Contingency individual wffs of PL
PL Equivalence pairs of wffs of PL
PL Consistency sets of wffs of PL
PL Inconsistency sets of wffs of PL

Figure 5.1: Logical properties of PL and the kinds of things to which they apply.

5.6 PT -Consistency

Suppose that you begin a tree with all and only the members of a set of wffs of PL,
{A1, A2, . . . , AN}, at its root, you apply the rules, and every branch of the tree closes
(i.e., the tree closes). Then, the set of sentences {A1, A2, . . . , AN} is PT -inconsistent.

A1

A2

...

AN

× × × × × × ×

⇐⇒ {A1, A2, . . . , AN} is PT -inconsistent

Suppose, on the other hand, that you begin a tree with all and only the members of a set
of wffs of PL, {A1, A2, . . . , AN}, at its root, you apply all of the required rules, and not
every branch of the tree closes—at least one branch remains open (i.e., the tree doesn’t
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close). Then, the set of wffs {A1, A2, . . . , AN} is PT -consistent.

A1

A2

...

AN

×# × × × × ×

⇐⇒ {A1, A2, . . . , AN} is S T -consistent

Is the set of sentences {(∀x)(∀y)Lxy, (∃x)∼Lxx} PT -consistent?

(∀x)(∀y)Lxy a
(∃x)∼Lxx ✓

∼Laa

(∀y)Lay a

Laa
×

Because the tree closes, we know that the set {(∀x)(∀y)Lxy, (∃x)∼Lxx} is PT -inconsistent.

Is the set {(∀x)(∀y)(Axy ⊃ Ayx), (∃x)∼Axx} PT -consistent?

(∀x)(∀y)(Axy ⊃ Ayx) k
(∃x)∼Axx ✓

∼Akk

(∀y)(Aky ⊃ Ayk) k

Akk ⊃ Akk ✓

∼Akk
#

Akk
×

Because the tree remains open, we know that the set {(∀x)(∀y)(Axy ⊃ Ayx), (∃x)∼Axx}
is PT -consistent.

It’s important to note that the properties of PT -consistency and PT -inconsistency are
defined very differently than the properties of PL-consistency and PL-inconsistency.
The definition of PL-(in)consistency has to do with PL interpretations,

PL-Consistency A set of wffs of PL, {A1, A2, . . . , AN} is PL-consistent if and only if
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there is some PL interpretation which makes each of ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N true.

PL-Inconsistency A set of wffs of PL, {A1, A2, . . . , AN} is PL-inconsistent if and
only if there is no PL interpretation which makes each of ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N
true.

Whereas the definition of PT -(in)consistency has nothing to dowith PL interpretations,
and everything to do with whether certain trees close or not.

PT-Consistency A set of wffs of PL, {A1, A2, . . . , AN} is PT -consistent if and only if
some completed PL tree which starts with ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N remains open.

PT-Inconsistency A set of wffs of PL, {A1, A2, . . . , AN} is PT -inconsistent if and
only if some PT tree which starts with ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N closes.

Nevertheless, there is an important relationship between PL-(in)consistency and PT -
(in)consistency. While we will have to wait until later in the class to see the proof of this
relationship, letme go ahead and informyounow that a set of wffs of PL is PL-consistent
iff it is PT -consistent; and a set of wffs of PL is PL-inconsistent iff it is PT -inconsistent.

Fact: For any set of wffs of PL, {A1, A2, . . . , AN}, that set is PL-consistent if
and only if it is PT -consistent, and PL-inconsistent if and only if it is PT -
inconsistent.

This fact tells us that PT -(in)consistency is a property worth paying attention to. We
can use the trees to tell us something about PL interpretations. If a tree closes, then we
know that there is no PL interpretation thatmakes all the wffs at the root of the tree true.
If the tree remains open, then we know that there is a PL interpretation which makes
all of the wffs at the base of the tree true.

5.7 ReadingPartialPL Interpretations offofOpenBranches

Actually, we can use the trees to do more than this. We can use them not only to learn
that there is a PL interpretation on which all of the wffs at the root of the tree are true.
If a tree remains open, we may use the open branches of the tree to read off (partial) PL
interpretations which make the wffs at the root of the tree true.

Here’s an example to illustrate how we can do that: suppose that we start off with the set
of wffs {(∃x)(∀y)Axy, (∃x)(∀y)∼Axy}. Here is a completed tree for this set of wffs:
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(∃x)(∀y)Axy ✓
(∃x)(∀y)∼Axy ✓

(∀y)Aay a b

(∀y)∼Aby a b

Aaa

Aab

∼Aba

∼Abb
#

On this tree, there is one open branch. To read a partial PL interpretation off of this open
branch, we begin by putting a thing in our domain for every constant or free variable
which appears on that open branch. The only constants or free variables appearing on
our open branch are a and b. So we let our domain contain these two things.

D = {a, b}

Now: we look to the atomic wffs of PL which appear on the branch. Since Aaa appears
on the open branch, we let a bear the relation A to itself. Since Aab appears on the open
branch, we let a bear the relation A to b. Since no other atomic wffs appear on the open
branch, we don’t let anything else bear the relation A to anything else. Thus,

A = {< a, a >,< a, b >}

And our completed partial interpretation looks like this:

I p =

 D = {a, b}
A = {< a, a >,< a, b >}

As youmay confirm, on this partial interpretation, both ‘(∃x)(∀y)Axy’ and ‘(∃x)(∀y)∼Axy’
are true.

5.8 PT Validity

We have seen that an argument P1 / P2 / . . . / PN // C is valid if and only if the set
{P1, P2, . . . , PN ,∼C} is inconsistent. Since the set {P1, P2, . . . , PN ,∼C} is PL-inconsistent
if and only if it is PT -inconsistent, we may use truth-trees to tests arguments for PL-
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validity.

Let’s define a new notion: PT -validity. A PL argument is PT -valid if and only if some
tree beginning with the wffs ⌜P1

⌝, ⌜P2
⌝, . . . , ⌜PN

⌝, and ⌜∼C⌝ closes.

P1

P2

...

PN

∼C

× × × × × × ×

⇐⇒ P1 / P2 / . . . / PN // C is PT -valid

Similarly, we will say that a PL-argument is PT -invalid if and only if some completed
tree beginning with the wffs ⌜P1

⌝, ⌜P2
⌝, . . . , ⌜PN

⌝, and ⌜∼C⌝ remains open.

P1

P2

...

PN

∼C

×# × × × × ×

⇐⇒ P1 / P2 / . . . / PN // C is PT -invalid

It’s important to distinguish between PL-(in)validity and PT -(in)validity. The former
is defined in terms of PL interpretations; whereas the latter is defined in terms of the
trees. As it turns out, these two notions are deeply connected. Towards the end of the
course, we will prove that an argument is PL-valid if and only if it is PT -valid, and that
it is PL-invalid if and only if it is PT -invalid.

Fact: For any PL-argument P1 / P2 / . . . / PN // C, that argument is PL-
valid if and only if it is PT -valid, and PL-invalid if and only if it is PT -
invalid.

However, this is something that we will have to prove. It is not obviously or straightfor-
wardly true.



5.8. PT Validity 127

Consider the following PL-argument:

(∀x)(Px ∨ Qx) / (∀x)(Px ⊃ Qx) // (∀x)Qx

To test this argument for PT -validity, we begin by placing its premises and the negation
of its conclusion at the top of a tree, as follows:

(∀x)(Px ∨ Qx)
(∀x)(Px ⊃ Qx)
∼(∀x)Qx

When we complete the tree, we arrive at:

(∀x)(Px ∨ Qx) s
(∀x)(Px ⊃ Qx) s
∼(∀x)Qx ✓

(∃x)∼Qx ✓

∼Qs

Ps∨ Qs ✓

Ps ⊃ Qs ✓

∼Ps

Ps
×

Qs
×

Qs
×

Since the tree closes, we know that the argument (∀x)(Px∨Qx) / (∀x)(Px ⊃ Qx) // (∀x)Qx
is PT -valid (and therefore, that it is PL valid).

Consider the PL argument

(∃x)∼Lxx // ∼(∀x)(∀y)(Lxy ⊃ ∼Lyx)

To see whether this argument is PT -valid, we complete the tree with its premise and the
negation of its conclusion at the root. When we do so, we arrive at:
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(∃x)∼Lxx ✓
∼ ∼(∀x)(∀y)(Lxy ⊃ ∼Lyx) ✓

∼Lgg

(∀x)(∀y)(Lxy ⊃ ∼Lyx) g

(∀y)(Lgy ⊃ ∼Lyg) g

Lgg ⊃ ∼Lgg ✓

∼Lgg
#

∼Lgg
#

Because the tree remains open, we know that the argument (∃x)∼Lxx // ∼(∀x)(∀y)(Lxy ⊃
∼Lyx) is PT -invalid (and therefore, that it is PL-invalid). Wemay also read off a partial
PL interpretation on which the argument’s premise is true yet its conclusion is false. ‘g’
is the only constant or free variable which appears on the tree, so we construct a domain
which contains only g. The tree tells us that g does not bear the relation L to itself, so
the relation L is empty. Thus, we arrive at the following partial PL-interpretation:

I p =

 D = {g}
L = {}

As you may verify for yourself, this is an interpretation on which ‘(∃x)∼Lxx’ is true, yet
∼(∀x)(∀y)(Lxy ⊃ ∼Lyx)’ is false.

If we are testing a PL argument for PT -validity, then we will call the partial interpreta-
tion read off of an open branch a PT counterexample to the argument.

A PT counterexample to an argument of PL is a partial PL interpretation
read off of an open branch of a PL tree beginning with the premises of the
argument and the negation of the conclusion of the argument at its root.

5.9 PT Tautologies, PT Contradictions, and PT Contin-
gencies

A wff of PL is a PT -tautology if and only if some tree with ⌜∼P⌝ at its root closes. It
is not a PT -tautology if and only if some completed tree with ⌜∼P⌝ at its root remains
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open.
∼P

× × × × × × ×
⇐⇒ P is a PT -tautology

∼P

× × × ×# × ×
⇐⇒ P is not a PT -tautology

Here, again, it is important to keep the notion of a PT -tautology separate from the no-
tion of a PL-tautology. The definition of PL-tautology has to dowith PL interpretations,
whereas the definition of PT -tautology has to do with whether a tree closes.

A wff of PL is a PT -contradiction if and only if some tree with ⌜P⌝ at its root closes. It is
not a PT -contradiction if and only if some completed tree with ⌜P⌝ at its root remains
open.

P

× × × × × × ×
⇐⇒ P is a PT -contradiction

P

× × × ×# × ×
⇐⇒ P is not a PT -contradiction

Finally, a wff of PL is a PT -contingency if and only if both some completed tree with ⌜P⌝
at its root remains open and some completed tree with ⌜∼P⌝ at its root remains open.
It is not a PT -contingency if and only if either some tree with ⌜P⌝ at its root closes or
some tree with ⌜∼P⌝ at its root closes.

P

× ×# × × × ×
and

∼P

× ×# × × × ×
⇐⇒ P is a PT -contingency

P

× × × × × × ×
or

∼P

× × × × × × ×
⇐⇒ P is not a PT -contingency

For instance, consider the wff ‘(∃x)(∀y)(Fxx ⊃ Fyy)’. When we begin a tree with the
negation of this wff at its root, the tree closes:
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∼(∃x)(∀y)(Fxx ⊃ Fyy) ✓

(∀x)∼(∀y)(Fxx ⊃ Fyy) a b

∼(∀y)(Faa ⊃ Fyy) ✓

(∃y)∼(Faa ⊃ Fyy) ✓

∼(Faa ⊃ Fbb) ✓

Faa
∼Fbb

∼(∀y)(Fbb ⊃ Fyy) ✓

(∃y)∼(Fbb ⊃ Fyy) ✓

∼(Fbb ⊃ Fcc) ✓

Fbb
∼Fcc
×

Soweknow that ‘(∃x)(∀y)(Fxx ⊃ Fyy)’ is a PT -tautology. (And that thewff ‘∼(∃x)(∀y)(Fxx ⊃
Fyy)’ is a PT -contradiction.)

Or consider the wff ‘(∃x)(∃y)Rxy’. When we begin a tree with the negation of this wff
at its root, the tree remains open:

∼(∃x)(∃y)Rxy ✓

(∀x)∼(∃y)Rxy a

∼(∃y)Ray ✓

(∀y)∼Ray a

∼Raa
#

So we know that ‘(∃x)(∃y)Rxy’ is not a PT -tautology. It is false on the partial PL in-
terpretation:

I p =

 D = {a}
R = {}

Similarly, when we begin a tree with ‘(∃x)(∃y)Rxy’ at its root, the tree remains open:
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(∃x)(∃y)Rxy ✓

(∃y)Ray ✓

Rab

So we know that ‘(∃x)(∃y)Rxy’ is not a PT -contradiction. It is true on the following
partial PL interpretation:

I p =

 D = {a, b}
R = {< a, b >}

And therefore, we know that ‘(∃x)(∃y)Rxy’ is a PT -contingency.

5.10 PT -Equivalence

Wemay test for PL-equivalence using the treemethod as follows: if some tree beginning
with the wff ⌜∼(P ≡ Q)⌝ at its root closes, then ⌜P⌝ and ⌜Q⌝ are PT -equivalent.

∼(P ≡ Q)

× × × × × × ×
⇐⇒ P and Q are PT -equivalent

If, on the other hand, some completed tree with ⌜∼(P ≡ Q)⌝ at its root remains open,
then ⌜P⌝ and ⌜Q⌝ are not PT -equivalent.

∼(P ≡ Q)

× × × ×# × ×
⇐⇒ P and Q are not PT -equivalent

For instance, wemay show that ‘(∀x)(∀y)Rxy’ and ‘(∃x)(∃y)Rxy’ are not PT -equivalent
with the following tree:
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∼[(∀x)(∀y)Rxy ≡ (∃x)(∃y)Rxy] ✓

(∀x)(∀y)Rxy a
∼(∃x)(∃y)Rxy ✓

(∀x)∼(∃y)Rxy a

∼(∃y)Ray ✓

(∀y)∼Ray a

∼Raa

(∀y)Ray a

Raa
×

∼(∀x)(∀y)Rxy ✓
(∃x)(∃y)Rxy ✓

(∃x)∼(∀y)Rxy ✓

∼(∀y)Rcy ✓

(∃y)∼Rcy ✓

∼Rcd

(∃y)Rey ✓

Re f
#

‘(∃x)(∃y)Rxy’ is true and ‘(∀x)(∀y)Rxy’ is false on the following partial PL interpre-
tation (read off the open branch):

I p =

 D = {c, d, e, f }
R = {< e, f >}

And we may show that ‘(∀x)(Px ⊃ (∃y)Gxy)’ and ‘(∀x)(∃y)(Px ⊃ Gxy)’ are PT -
equivalent with the following tree:



5.11. Infinite Trees 133

∼[(∀x)(Px ⊃ (∃y)Gxy) ≡ (∀x)(∃y)(Px ⊃ Gxy)] ✓

(∀x)(Px ⊃ (∃y)Gxy) a
∼(∀x)(∃y)(Px ⊃ Gxy) ✓

(∃x)∼(∃y)(Px ⊃ Gxy) ✓

∼(∃y)(Pa ⊃ Gay) ✓

(∀y)∼(Pa ⊃ Gay) b

Pa ⊃ (∃y)Gay ✓

∼Pa

∼(Pa ⊃ Gab)

Pa
∼Gab
×

(∃y)Gay ✓

Gab

∼(Pa ⊃ Gab)

Pa
∼Gab
×

∼(∀x)(Px ⊃ (∃y)Gxy) ✓
(∀x)(∃y)(Px ⊃ Gxy) c

(∃x)∼(Px ⊃ (∃y)Gxy) ✓

∼(Pc ⊃ (∃y)Gcy) ✓

Pc
∼(∃y)Gcy ✓

(∀y)∼Gcy d

(∃y)(Pc ⊃ Gcy) ✓

Pc ⊃ Gcd ✓

∼Gcd

∼Pc
×

Gcd
×

5.11 Infinite Trees

Consider the tree which begins with the sole wff ‘(∀x)(∃y)Rxy’.

(∀x)(∃y)Rxy

We must begin this tree by applying the rule ∀, instantiating some constant—let’s start
with ‘a’:

(∀x)(∃y)Rxy a

(∃y)Ray

Then, we must apply the rule for ∃ by writing down a substitution instance of (∃y)Ray.
However, we must choose an entirely new name to instantiate. We cannot use ‘a’ again.
Let’s choose ‘b’.
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(∀x)(∃y)Rxy a

(∃y)Ray ✓

Rab

The tree hasn’t closed; however, the tree is not yet complete, since we need to go back to
‘(∀x)(∃y)Rxy’ and write down a substitution instance with the constant ‘b’, since that
constant now appears on the same branch as ‘(∀x)(∃y)Rxy’.

(∀x)(∃y)Rxy a b

(∃y)Ray ✓

Rab

(∃y)Rby

And now we must write down a substitution instance of ‘(∃y)Rby’. However, we cannot
use the constants ‘a’ or ‘b’. Both of them already appear on the same branch as ‘(∃y)Rby’.
It must be an entirely new name. Let’s choose ‘c’:

(∀x)(∃y)Rxy a b

(∃y)Ray ✓

Rab

(∃y)Rby ✓

Rbc

But now, we must go back to ‘(∀x)(∃y)Rxy’, and write down a substitution instance of
it with the constant ‘c’, since that constant now appears on the same branch as it.

(∀x)(∃y)Rxy a b c

(∃y)Ray ✓

Rab

(∃y)Rby ✓

Rbc

(∃y)Rcy

And we will simply keep going in this way: introducing new names and then instanti-
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ating them, over and over again, without end.

(∀x)(∃y)Rxy a b c d e · · ·

(∃y)Ray ✓

Rab

(∃y)Rby ✓

Rbc

(∃y)Rcy ✓

Rcd

(∃y)Rdy ✓

Rde
...

The completed tree is infinitely long. How can we tell? Well, we’ve established a pattern
of the application of rules, and we can see that that pattern, if we continue on with it,
will never terminate. (We could be more rigorous about this, but let’s not.)

At no finite point will all of the required rules be applied. And at no finite point will the
tree close. So...is ‘(∀x)(∃y)Rxy’ a PT -contradiction, or not? To answer that question,
wemust answer two others: does the infinite tree close, and is the infinite tree complete?
If the tree goes on forever, then it looks like the treemust never close. (Wewill prove this
rigorously later on in the course.) And if the tree never closes, then the treemust remain
open. Ok. So the tree remains open. But is the tree complete? Well, at no finite point
are all of the required rules applied. But the tree is infinite; so perhaps, in the infinite
tree, all of the required rules are applied, even though, at no finite stage of construction
are all of the required rules applied.

What we realized in the preceding paragraph is that it’s important to distinguish two
kinds of infinite trees: trees which are infinitely long and complete and those which
are infinitely long but incomplete. Here’s a nice way to think about these infinite trees:
suppose that, at 11:00, we apply the first rule; at 11:30, we apply the second rule; at 11:40,
we apply the third rule; at 11:45, we apply the fourth rule; at 11:48, we apply the fifth
rule; at 11:50, we apply the sixth rule. In general, we apply the nth rule at 60/n minutes
before 12:00. Then, when 12:00 rolls around, we will have applied an infinite number
of rules. We will then have the infinite tree stretched out before us. And we can ask
ourselves, of this infinite tree: is the tree complete?
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The tree will be complete iff every wffwhich is neither atomic, the negation of an atomic,
or universally quantified has been checked off, and, for every universally quantified wff
appearing on the tree, we have instantiated every constant appearing on an open branch
with that wff. If, once the infinite tree is complete, there are any constants on an open
branch of the tree which are not instantiated in a universally quantified wff on the same
branch, or if there are any wffs which are not checked off except for the universally
quantified wffs, the atomic wffs, and the negations of the atomic wffs, then the infinite
tree is not complete.

In the tree above, if we carry on introducing new names and then instantiating them for-
ever, then every constant of PL will appear at some point on the tree, and every constant
of PL will appear in a substitution instance of ‘(∀x)(∃y)Rxy’. Every non-universally
quantified wff will be checked off. So we can tell that the infinite tree that we will con-
struct if we carry on in the same pattern will be a complete infinite tree.

On the other hand, consider the following infinite tree:

(∀x)(∃y)Rxy a b c d e · · ·
∼(∃x)(∃y)Rxy

(∃y)Ray ✓

Rab

(∃y)Rby ✓

Rbc

(∃y)Rcy ✓

Rcd

(∃y)Rdy ✓

Rde
...

This tree is exactly like the one above, except that we have an additional wff at the root
of the tree: ‘∼(∃x)(∃y)Rxy’. In the tree above, we establish the same pattern, and con-
tinue on in constructing the infinite tree exactly as we did above. In this case, when the
infinite tree is written down, it will remain open; however, it will not be complete. That’s
because the infinite tree will have a wff which is not an atomic, a negation of an atomic,
or universally quantified, and which is not checked off—that is, the wff ‘∼(∃x)(∃y)Rxy’.

It is important to distinguish between infinite complete trees and infinite incomplete
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trees because, if we weren’t sensitive to that distinction, then we might say that the set
{(∀x)(∃y)Rxy,∼(∃x)(∃y)Rxy} is PT -consistent; which is bad, because, that set is PL-
inconsistent.

We avoid this result by saying that a set of wffs is PT -consistent iff some completed tree
remains open; and PT -inconsistent iff every completed tree closes. But the above infinite
tree is not completed; whereas the finite tree below is:

(∀x)(∃y)Rxy a
∼(∃x)(∃y)Rxy ✓

(∀x)∼(∃y)Rxy a

(∃y)Ray

∼(∃y)Ray
×

Sowe can conclude that the set {(∀x)(∃y)Rxy,∼(∃x)(∃y)Rxy} is PT -inconsistent. That’s
good, since that set is PL-inconsistent.

To sumup: some trees remain open once they are completed; but they require an infinite
number of rules to be applied before they are complete. For those trees, you needn’t
complete the infinite tree; however, you must establish a pattern of applying rules which
is such that, if that pattern of applying rules is carried out an infinite number of times,
then:

1. The tree will remain open;

2. On every open branch, every wff which is neither an atomic wff, the negation of
an atomic wff, nor a universally quantified wff will be checked off; and

3. For every universally quantified wff ⌜(∀x)P⌝ appearing on an open branch, and
every constant or free variable ⌜t⌝ appearing on that open branch, the rule ∀ will
have been applied to that wff with that constant or free variable by writing down
the substitution instance ⌜P[x→ t]⌝ at some point on that open branch.

For instance, consider the wff ‘(∃x)(Fx ∨ (∀y)Fy)’. To test whether this wff is a PT -
tautology, we construct the tree beginning with ‘∼(∃x)(Fx ∨ (∀y)Fy)’. That tree will
be infinite:
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∼(∃x)(Fx ∨ (∀y)Fy) ✓

(∀x)∼(Fx ∨ (∀y)Fy) a b c d · · ·

∼(Fa∨ (∀y)Fy) ✓

∼Fa
∼(∀y)Fy ✓

(∃y)∼Fy ✓

∼Fb

∼(Fb∨ (∀y)Fy) ✓

∼Fb
∼(∀y)Fy ✓

(∃y)∼Fy ✓

∼Fc

∼(Fc∨ (∀y)Fy) ✓

∼Fc
∼(∀y)Fy ✓

(∃y)∼Fy ✓

∼Fd
×

Now, we can see that we will continue on in this manner, writing down, for every con-
stant of PL ⌜a⌝ the following sequence:

∼(Fa∨ (∀y)Fy) ✓

∼Fa
∼(∀y)Fy ✓

(∃y)∼Fy ✓

∼Fb

where ⌜b⌝ is some new constant of PL that hasn’t yet appeared on the tree. As we
go, we will check off every wff of PL that needs to be checked off, and every time we
write down a new constant of PL ⌜b⌝, we will write down a new substitution instance of
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‘(∀x)∼(Fx∨ (∀y)Fy)’, ⌜∼(Fb∨ (∀y)Fy)⌝. So the tree will be infinitely long, but it will
be complete, and it will never close. So the tree remains open. So we may conclude that
‘(∃x)(Fx ∨ (∀y)Fy)’ is not a PT -tautology. It is false on the following interpretation
(read off of the open branch):

I p =

 D = {a, b, c, d, e, . . . }
F = {}



Chapter 6

Predicate Logic with Identity and
Functions

6.1 The Language PLI

6.1.1 Preliminary Orientation

We’re going to enrich our logical language further. In the first place, we’re going to
introduce a special relation symbol: ‘=’. The interpretation of this relation will be fixed.
In every PLI interpretation, ⌜t1 = t⌝2 will mean ⌜the thing denoted by t1 is identical to
the thing denoted by t⌝2, for all terms ⌜t⌝1 and ⌜t⌝2 of PLI. So, for instance, if we have the
partial PLI interpretation

I p =


D = the set of all people
m = Mark Twain
s = Samuel Clemens
l = David Lewis

Then the wff
m = s

will say that Mark Twain is identical to (is the same person as) Samuel Clemens. And

∼m = l

140
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will say that Mark Twain is not identical to (is not the same person as) David Lewis.
(Informally, we will write ‘∼m = l’ as ‘m , l’.)

In the second place, we’re going to introduce a new kind of syntactic entity, known as
a function. Given a term ⌜t⌝ of PLI, and a function ⌜f⌝ of PLI, ⌜f(t)⌝—read as ⌜f of
t⌝—will denote something in the domain of our interpretation, and will be treated syn-
tactically just like any other term. So, for instance, given the partial PLI interpretation

I p =


D = {1, 2, 3, 4, 5, . . . }
a = 1

f (x) = x + 1

Px = x is prime

‘ f (a)’ refers to 2 (since 1 + 1 = 2). We may then write

P f (a)

which says that 1 + 1 is prime (which is true).

That’s the informal characterization. Now we’ll have to delve into the nitty-gritty.

6.1.2 Syntax for PLI

In this section, I’m going to tell you what the vocabulary of PLI is, and I’m going to
tell you which expressions of PLI are grammatical—which are well-formed formulae, or
‘wffs’—just as I did for PL.

Vocabulary for PLI

The vocabulary of PLI include the following symbols:

1. for each n ≥ 1, an infinite number of n-place predicates (any capital letter, along
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with a superscript n—perhaps with subscripts)

A1 B1 · · · Z1 A1
1 · · · Z1

1 A1
2 · · ·

A2 B2 · · · Z2 A2
1 · · · Z2

1 A2
2 · · ·

...
... · · ·

...
... · · ·

...
... · · ·

An Bn · · · Zn An
1 · · · Zn

1 An
2 · · ·

...
... · · ·

...
... · · ·

...
... · · ·

2. for each n ≥ 1, an infinite number of n-place function symbols (lowercase f , g,
or h along with a superscript n—perhaps with subscripts)

f 1 g1 h1 f 1
1 g1

1 h1
1 f 1

2 . . .

f 2 g2 h2 f 2
1 g2

1 h2
1 f 2

2 . . .

...
...

...
...

...
...

... · · ·

f n gn hn f n
1 gn

1 hn
1 f n

2 . . .

...
...

...
...

...
...

... · · ·

3. An infinite number of constants (any lowercase letter between a and v, except for
f , g, and h—perhaps with subscripts)

a, b, . . . , e, i, . . . , u, v, a1, b1, . . . , e1, i1, . . . , u1, v1, a2, b2, . . .

4. An infinite number of variables (lowercase w, x, y, or z—perhaps with subscripts)

w, x, y, z,w1, x1, y1, z1,w2, x2, . . .

5. Logical operators
∼,∨, & ,⊃,≡,∃,∀

6. The identity relation,
=

7. parenthases
( , )



6.1. The Language PLI 143

Nothing else is included in the vocabulary of PL.

Grammar

Any sequence of the symbols in the vocabulary of PLI is a formula of PLI. For instance,
all of the following are formulae of PLI:

V2800x f 45 ===∼ ((⊃⊃ an f )v

P1 = Q2 = R3 = S 4 = T 5 =∼∼
(∃y)((∀x)R2g(x, x)h(x) ⊃ ∼F1 f 2(y, y))

N54xy∨ ∼ ∼(∃x)B2 = x

However, only one—the third—is a well-formed formula (or ‘wff ’) of PLI. We specify
what it is for a string of symbols from the vocabulary of PLI to be a wff of PLI with the
following rules.

f) If ⌜fn ⌝ is an n-place function symbol and ⌜t⌝1, ⌜t⌝2, . . . ⌜t⌝n are n terms, then
⌜fn(t1, t2, . . . , tn)⌝ is a term.

F ) If ⌜F n ⌝ is an n-place predicate and ⌜t⌝1, ⌜t⌝2, . . . , ⌜t⌝n are n terms, then ⌜F nt1t2...t⌝n
is a wff.

=) If ⌜t⌝1 and ⌜t⌝2 are terms, then ⌜t1 = t⌝2 is a wff.

∼) If ⌜P⌝ is a wff, then ⌜∼P⌝ is a wff.

&) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P & Q)⌝ is a wff.

∨) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P∨Q)⌝ is a wff.

⊃) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P ⊃ Q)⌝ is a wff.

≡) If ⌜P⌝ and ⌜Q⌝ are wffs, then ⌜(P ≡ Q)⌝ is a wff.

∀) If ⌜P⌝ is a wff and ⌜x⌝ is a variable, then ⌜(∀x)P⌝ is a wff.

∃) If ⌜P⌝ is a wff and ⌜x⌝ is a variable, then ⌜(∃x)P⌝ is a wff.

− Nothing else is a wff.

Note: none of ‘f’, ‘F ’, ‘t’, ‘x’, ‘P’, and ‘Q’ appear in the vocabulary of PLI. They are not
themselves part of the vocabulary of PLI. Rather, we are using them here as variables
ranging over the vocabulary of PLI.
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All and only the strings of symbols that can be constructed by repeated application
of the rules above are well-formed formulae. For instance, if we wanted to show that
‘((∀x)R2 f 2(x, x)g1(x) ⊃ ∼a = a)’ is a wff of PLI, we could walk through the follow-
ing steps to build it up:

a) ‘ f 2(x, x)’ is a term of PLI [from (f)]

b) ‘g1(x)’ is a term of PLI [from (f)]

c) So, ‘R2 f 2(x, x)g1(x)’ is a wff of PLI [from (a), (b), and (F )]

d) So, ‘(∀x)R2 f 2(x, x)g1(x)’ is a wff of PLI [from (c) and (∀)]

e) ‘a = a’ is a wff of PLI [from (=)]

f) So, ‘∼a = a’ is a wff of PLI [from (e) and (∼)]

g) So, ‘((∀x)R2 f 2(x, x)g1(x) ⊃ ∼a = a)’ is a wff of PLI [from (d), (f), and (⊃)]

As before, we will adopt the convention of dropping the outermost parenthases in a wff
of PL and dropping the superscripts on the predicates of PLI. Wewill additionally adopt
the conventions of dropping the superscripts on function symbols of PLI. And we will
adopt the convention of writing ⌜t1 , t⌝2 rather than ⌜∼t1 = t⌝2. So, abiding by our
informal conventions, we would write the wff of PLI ‘((∀x)R2 f 2(x, x)g1(x) ⊃ ∼a =

a)’ as:
(∀x)R f (x, x)g(x) ⊃ a , a

I’ll adopt these conventions from here on out.

We could, just as before, use syntax trees to represent the way that a wff of PLI is built
up according to the rules for wffs given above. For instance, we could notate the proof
given above as follows:
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(∀x)R f (x, x)g(x) ⊃ a , a

(⊃)

(∀x)R f (x, x)g(x)

(∀)

R f (x, x)g(x)

(F )

f (x, x)

(f)

g(x)

(f)

a , a

(∼)

a = a

(=)

It is important to note, though, that not every sequence of symbols which appears on
this syntax tree is itself a wff of PLI. ‘ f (x, x)’ and ‘g(x)’ are not wffs of PLI. They are,
rather, terms of PLI. ‘R f (x, x)g(x)’ is the first wff of PLI to appear on the left-most
branch of this syntax tree (working our way up from the bottom).

6.1.3 Semantics for PLI

Just as in PL, we will provide the semantics for our language PLI by appealing to inter-
pretations. A PL interpretation was defined as follows:

A PL-interpretation, I , provides

1. A specification of which things fall in the domain, D , of the interpre-
tation.a

2. For every variable of PL, a specification of which thing in the domain
D it represents.

3. For every constant of PL, a specification of which thing in the domain
D it represents.

4. For every predicate of PL, a specification of the property or relation it
represents.

a Note: the domain must be non-empty.

We will give a slightly altered definition of an interpretation for PLI:
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A PLI-interpretation, I , provides

1. A specification of which things fall in the domain, D , of the interpre-
tation.a

2. For every variable of PLI, a specification of which thing in the domain
D it represents.

3. For every constant of PLI, a specification ofwhich thing in the domain
D it represents.

4. For every predicate of PLI, a specification of the property or relation
it represents.

5. For every function symbol of PLI, a specification of the function it
represents. (Note: the function must be total on the domain D .)

a Note: the domain must be non-empty.

Just as with PL, we won’t be able to specify a full PLI interpretation. So, instead, we will
make do with partial PLI interpretations. A partial PLI interpretation is defined below.

Given a wff, set of wffs, or argument of PLI, a partial PLI-
interpretation, I p provides:

1. A specification of which things fall in the domain, D , of the partial
interpretation.a

2. For the free variables appearing in the wff, set of wffs, or argument of
PLI, a specification of which thing in the domain D they represent.

3. For the constants appearing in the wff, set of wffs, or argument of PLI,
a specification of which thing in the domain D they represent.

4. For the predicates appearing in thewff, set of wffs, or argument of PLI,
a specification of the property or relation they represent.

5. For the function symbols appearing in the wff, set of wffs, or argu-
ment of PLI, a specification of the function they represent. (Note: the
function must be total on the domain D .)

a Note: the domain must be non-empty.

(For now, don’t worry about the requirement that the function be total—we’ll come back
to that requirement in a bit.)

For instance, suppose that we have the following wff of PL,

(∀x)Lx f (x)
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Here is a partial interpretation of this wff:

I p =


D = { Adam, Betsy, Carol }

Lxy = x loves y
f (x) = the best friend of x

We specified the domain, D . Since all of the variables are bound, we do not need to say
which thing they refer to. There is just one predicate in this wff: a 2-place predicate,
‘L’; and just one functions symbol: the 1-place function symbol, ‘ f ’. We said that Lxy
referred to the relation ⌜x loves y⌝ and we said that f (x) refers to the best friend of x.
So we’ve provided a partial PL interpretation for this wff.

6.1.4 More on PLI-Interpretations of Function Symbols

Above, I interpreted ‘ f ’ and ‘L’ by just saying that ⌜Lxy⌝ refers to the relation ⌜x loves y⌝

and saying that ⌜ f (x)⌝ refers to the best friend of x. This is fine, as far as it goes, except
that you might not know who Adam loves, or who Betsy’s best friend is. We saw before
that we may specify the meaning of a relation with a set of ordered pairs, as in

L = {< Adam, Adam >,< Adam, Carol >,< Betsy, Carol >}

This tells us that Adam loves himself and Carol, Betsy loves Carol, Adam doesn’t love
Betsy, Betsy doesn’t love herself or Adam, and Carol doesn’t love anybody.

Similarly, there is another way of specifying a the meaning of a function symbol of PL
that will tell us precisely which objects in the domain are referred to by the expression
⌜ f (x)⌝, for every x. Suppose that Adam’s best friend is Betsy, Betsy’s best friend is Carol,
and Carol’s best friend is Adam. Then, we may specify this explicitly by writing the
meaning of ‘ f ’ as follows:

f = {< Adam, Betsy >,< Betsy, Carol >,< Carol, Carol >}

This tells us that Adam’s best friend is Betsy, Betsy’s best friend is Carol, and Carol’s best
friend is herself.

So, both relations and functions get represented with a set of ordered pairs. What, then,
is the difference between a function and a relation? The difference is this: while, for
relations, a single thing may be related to multiple other things; for a function, each
thing must be associated with at most one other thing.

Relations A relation on the domain D is any set of ordered pairs < a, b > such that
both a and b are in D .
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(a) A relation (b) A function

Figure 6.1: Figure 6.1a shows a relation on the domain D . This relation is given by the
set of ordered pairs {< a, b >,< b, i >,< d, a >,< d, d >,< i, d >,< i, i >}. Figure 6.1b
shows a function on the domain D . This function is given by the set of ordered pairs
{< a, a >,< b, a >,< c, i >,< d, b >,< i, c >}.

Functions A function, f , on the domain D is any set of ordered pairs < a, b > such
that both a and b are in D and which is also such that, if < a, b > is in f , then, for
any c , b, < a, c > is not in f .

(Notice that, given these definitions, every function counts as a relation; though not
every relation counts as a function.) That is: given any entity in the domainD , a function
associates with that entity at most one other thing in D . It is for this reason that we can
write ‘ f (a)’ and have it mean something exact. If < a, b > and < a, c > were both in f ,
then ‘ f (a)’ would be ambiguous—it might mean b and it might mean c. If < a, b > is
in the function f , then we may write ‘ f (a) = b’.

This is how a function works: you hand it some thing, a, and it hands you back some
other thing, f (a). Think about the function f (x) = x + 1, defined on the domain of
the natural numbers, {1, 2, 3, 4, 5, . . . }. If you hand this function 1, then it hands you
back f (1), which is just 2. If you hand it 2, then it hands you back f (2), which is just 3.
If you hand it 3, then it hands you back f (3), which is just 4. And so on.

A function on the domain D is total iff, no matter what you hand it from the domain
D , it hands you something back.

Total Functions Atotal function, f , on the domainD is any function on the domain
D such that, for every a in D , there is some b in D such that < a, b > is in the
function f .

Two sample total functions are shown in figure 6.2. Notice that it does not matter
whether everything in the domain may be handed back. In figure 6.2b, no matter what
you hand f , it hands back b. That doesn’t matter. The function is still total, since you
can hand it anything in D , and it will hand you something back.

In this course, we will only be concerned the functions which are total on the domain of
the interpretation. Thus, an interpretation does not count as a PLI interpretation unless
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(a) (b)

Figure 6.2: Total functions on the domain D

every function symbol refers to a total function on D . For instance the following is not
a (partial) PLI interpretation:

I p =

 D = {1, 2, 3, 4, 5, . . . }
g(x) = x − 1

←− Not a PLI interpretation

This is not a partial PLI interpretation because, when you hand g 1, it does not hand
you back anything in the domain D .

In general, we will call the things that you hand a function its arguments, and we will
call the thing that it hands you back its value.

f ( a︸︷︷︸
argument

) = b︸︷︷︸
value

Or, alternatively, since, after all f (a) just is (is identical to) b, we may say that f (a) is
the value of the argument a.

f (
argument︷︸︸︷

a )︸       ︷︷       ︸
value

If f is a 2-place function, then f will have 2 arguments.

f ( a, b︸︷︷︸
arguments

) = c︸︷︷︸
value

Or, alternatively,

f (

arguments︷︸︸︷
a, b )︸        ︷︷        ︸

value

If we wish to represent a function of two arguments with a set of ordered pairs, then we
may do so by utilizing ordered pairs of ordered pairs and entities. That is, to represent a
function which hands you back c when you hand it the ordered pair < a, b >, we may
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write:
f = {· · · << a, b >, c > · · · }

6.1.5 Truth on a PLI Interpretation

Suppose that we’ve got a PLI interpretation I . Then, we can lay down the following
rules which tell us what the wffs of PLmean on that interpretation—that is, under which
conditions they are true on that interpretation. (Rules (F ),
(∼), (∨), (&), (⊃), (≡), (∀), and (∃) should be familiar from PL.)

f) If ⌜t⌝1, ⌜t⌝2, . . . ⌜t⌝n are n terms of PLI and ⌜fn ⌝ is an n-place function symbol, then
⌜fn(t1, t2, . . . , tn)⌝ refers to the value of the things referred to by ⌜t⌝1, ⌜t⌝2, . . . ⌜t⌝n,
under the function fn. (That is: it refers to the thing that fn hands you back when
you hand it the things denoted by ⌜t⌝1, ⌜t⌝2, . . . ⌜t⌝n.)

F ) A wff of the form ⌜F nt1 . . . t⌝n is true on the interpretation I if the things in the
domain denoted by ⌜t⌝1 . . .

⌜t⌝n on the interpretation have the property/bear to
each other the relation represented by ⌜F n ⌝. Otherwise, ⌜F nt1 . . . t⌝n is false on
the interpretation I .

Note: in both (f) and (F ), ‘n’ could be any number greater than or equal
to one. If n = 1, then the way that I’ve written the terms, ‘t1 . . . tn’, is mis-
leading, since there is only one term if n = 1.

=) A wff of the form ⌜t1 = t⌝2 is true on the interpretation I if the thing referred to
by ⌜t⌝1 is the same thing as the thing referred to by ⌜t⌝2. Otherwise, ⌜t1 = t⌝2 is
false on the interpretation I .

∼) A wff of the form ⌜∼P⌝ is true on the interpretation I if ⌜P⌝ is false on the
interpretation I . Otherwise, ⌜∼P⌝ is false on the interpretation I .

∨) A wff of the form ⌜P∨Q⌝ is true on the interpretation I if either ⌜P⌝ is true on
the interpretation I or ⌜Q⌝ is true on the interpretation I . Otherwise, ⌜P∨Q⌝

is false on the interpretation I .

&) A wff of the form ⌜P & Q⌝ is true on the interpretation I if both ⌜P⌝ is true
on the interpretation I and ⌜Q⌝ is true on the interpretation I . Otherwise,
⌜P & Q⌝ is false on the interpretation I .

⊃) A wff of the form ⌜P ⊃ Q⌝ is true on the interpretation I if either ⌜P⌝ is false on
the interpretationI or ⌜Q⌝ is true on the interpretationI . Otherwise, ⌜P ⊃ Q⌝

is false on the interpretation I .
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≡) A wff of the form ⌜P ≡ Q⌝ is true on the interpretation I if both ⌜P⌝ and ⌜Q⌝
have the same truth value on the interpretation I . Otherwise, ⌜P ≡ Q⌝ is false
on the interpretation I .

∀) A wff of the form ⌜(∀x)P⌝ is true on the interpretation I if, for every α in D ,
⌜P⌝ is true on the x-variant interpretation Ix→α. Otherwise, ⌜(∀x)P⌝ is false on
the interpretation I .

∃) A wff of the form ⌜(∃x)P⌝ is true on the interpretation I if for some α in D , ⌜P⌝
is true on the x-variant interpretation Ix→α. Otherwise, ⌜(∃x)P⌝ is false on the
interpretation I .

For instance, consider the following partial interpretation, I p:

I p =

 D = {1, 2}
f = {< 1, 2 >,< 2, 1 >}

Let’s check whether the wff
(∀x)x = f ( f (x))

is true on this interpretation. This wff is of the form ⌜(∀x)P⌝; that is, it is a universally
quantified wff—the wff ’s main operator is ‘(∀x)’. The semantic rule (∀) tells us that this
wff is true iff ‘x = f ( f (x))’ is true on every x-variant of I p. There are two x-variants
of I p:

I p
x→1 and I p

x→2

Start with the first one, I p
x→1. Is ‘x = f ( f (x))’ true on this interpretation? It is true on

this interpretation iff the thing denoted by ‘x’ on this interpretation is identical to the
thing denoted by ‘ f ( f (x))’ on this interpretation. x denotes the number 1. So we just
have to check to see whether ‘ f ( f (x))’ denotes 1 in order to see whether this wff is true
or false. The semantic rule (f) tells us that ‘ f ( f (x))’ refers to the value of whatever f (x)
refers to, under the function f . But we don’t yet know what ‘ f (x)’ refers to on I p

x→1.
Well, the semantic rule (f) tells us that, on the interpretation I p

x→1, ‘ f (x)’ refers to the
value of whatever x refers to under the function f . We know that x refers to 1 on I p

x→1.
And we know that f (1) = 2 on I p

x→1. So ‘ f (x)’ refers to 2 on I p
x→1. And we know

that f (2) = 1 on I p
x→1, so we know that ‘ f ( f (x))’ refers to 1 on I p

x→1. And this is
identical to the thing that x refers to on I p

x→1. So ‘x = f ( f (x))’ is true on I p
x→1.

Consider next I p
x→2. Is ‘x = f ( f (x))’ true on this interpretation? It is true on this

interpretation iff the thing denoted by ‘x’ on this interpretation is identical to the thing
denoted by ‘ f ( f (x))’ on this interpretation. ‘ f (x)’ refers to the value of 2 under the
function f , which is 1. So ‘ f (x)’ refers to 1. And, therefore, ‘ f ( f (x))’ refers to the value
of 1 under the function f , which is 2. So ‘ f ( f (x))’ refers to 2. So ‘x = f ( f (x))’ is true
on the interpretation I p

x→2.
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So ‘x = f ( f (x))’ is true on both I p
x→1 and I p

x→2. But these are all of the x-variants of
I p. So ‘(∀x)x = f ( f (x))’ is true on the interpretation I p.

6.2 Logical Notions of PLI

All of the logical notions of PLI will be exactly the same as they were in PL, once we
swap out the notion of a PL interpretation for that of a PLI interpretation. Thus,

PLI Validity A PLI argument is PLI valid iff there is no PLI interpretation on which
the premises are all true while the conclusion is false.

PLI Invalidity A PLI argument is PLI invalid iff there is some PLI interpretation
on which the premises are all true while the conclusion is false.

PLI Consistency A set of wffs of PLI { ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N} is PLI consistent iff
there is some PLI interpretation on which ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N are all true.

PLI Inconsistency A set of wffs of PLI { ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N} is PLI inconsistent
iff there is no PLI interpretation on which ⌜A⌝1, ⌜A⌝2, . . . , ⌜A⌝N are all true.

PLI Equivalence A pair of wffs of PLI, ⌜A⌝ and ⌜B⌝, are PLI equivalent iff ⌜A⌝

and ⌜B⌝ are true in all the same PLI interpretations and false in all the same PLI
interpretations (i.e., iff there is no PLI interpretation on which ⌜A⌝ and ⌜B⌝ have
different truth-values).

PLI Tautology A wff of PLI ⌜A⌝ is a PLI tautology iff there is no PLI interpretation
on which ⌜A⌝ is false (i.e., iff ⌜A⌝ is true on every PLI interpretation).

PLI Contradiction A wff of PLI ⌜A⌝ is a PLI contradiction iff there is no PLI
interpretation on which ⌜A⌝ is true (i.e., iff ⌜A⌝ is false on every PLI interpreta-
tion).

PLI Contingency A wff of PLI ⌜A⌝ is a PLI contingency iff there is some PLI
interpretation on which ⌜A⌝ is true and some PLI interpretation on which ⌜A⌝
is false.

6.3 Trees for PLI

We may test for all of these logical properties of PLI just as we did with PL: with the
aid of trees. However, in PLI, we will need to add two additional rules and modify our
account of what it is for a tree to be complete.
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6.3.1 The Rule (=)

Our first new rule tells us that, when we know that the thing denoted by ⌜t⌝1, is identical
to the thing denoted by ⌜t⌝2, we may substitute ⌜t⌝2 for ⌜t⌝1 wherever ⌜t⌝1 occurs (and
vice versa).

(=)

P[t1]

t1 = t2

P[t1 → t2]

and

P[t2]

t1 = t2

P[t2 → t1]

Here’s how to read this rule: if you have a wff ⌜P[t1]⌝ in which the constant or free
variable ⌜t⌝1 occurs on anopenbranchof the tree, and youhave awffof the form ⌜t1 = t⌝2
on the same branch, then you may substitute ⌜t⌝2 for ⌜t⌝1 in ⌜P[t1]⌝, writing down the
wff ⌜P[t1 → t2]⌝. You may similarly substitute ⌜t⌝1 for ⌜t⌝2 in any wff in which ⌜t⌝2
appears. That is: it does not matter whether the terms are on the left- or right-hand-side
of the equals sign.

Note: when you apply this rule, you do not check off the wff ⌜t1 = t⌝2, and you do not
check off any other wff either. You may have to make multiple substitutions before you
are done with the tree. In fact, an open tree will not be complete until you have made
all the possible substitutions which are allowed by the rule (=).

For instance, suppose thatwewish to check the following PLI argument for PT I-validity:

(∀x)(∀y)x = y / (∃w)Pw // (∀z)Pz

To do so, we start a tree with the wffs ‘(∀x)(∀y)x = y’, ‘(∃w)Pw’ and ‘∼(∀z)Pz’:

(∀x)(∀y)x = y

(∃w)Pw
∼(∀z)Pz

We may begin by applying the rule for (∼∀) to ‘∼(∀z)Pz’, as shown:



6.3. Trees for PLI 154

(∀x)(∀y)x = y

(∃w)Pw
∼(∀z)Pz ✓

(∃z)∼Pz

And we may then apply the rule (∃) to ‘(∃w)Pw’ and ‘(∃z)∼Pz’:

(∀x)(∀y)x = y

(∃w)Pw ✓
∼(∀z)Pz ✓

(∃z)∼Pz ✓

Pa

∼Pb

When we then apply the rule (∀) to ‘(∀x)(∀y)x = y’ by writing down the substitu-
tion instance ‘(∀y)a = y’ and apply the rule (∀) to ‘(∀y)a = y’ by writing down the
substitution instance ‘a = b’, we get:

(∀x)(∀y)x = y a
(∃w)Pw ✓
∼(∀z)Pz ✓

(∃z)∼Pz ✓

Pa

∼Pb

(∀y)a = y b

a = b

Now, we may use the rule (=) to substitute ‘a’ for ‘b’ in ‘∼Pb’, writing down ‘∼Pa’:
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(∀x)(∀y)x = y a
(∃w)Pw ✓
∼(∀z)Pz ✓

(∃z)∼Pz ✓

Pa

∼Pb

(∀y)a = y b

a = b

∼Pa
×

Since ‘Pa’ and ‘∼Pa’ appear on the same branch, this branch closes, and the tree closes.
So the PLI argument

(∀x)(∀y)x = y / (∃w)Pw // (∀z)Pz

is PT I-valid.

6.3.2 The Rule (, ×)

Our next rule tells us that, if, on any branch, a wff of the form ⌜t , t⌝ appears, for any
term ⌜t⌝, then you may immediately close that branch of the tree.

(, ×)

t , t

×

For instance, suppose thatwewish to seewhether the followingwff is a PT I-contradiction:

(∃x)(∀y) f (x) , y

To check this, we begin a tree with ‘(∃x)(∀y) f (x) , y’ at its root. We may begin by
applying the rule (∃), writing down a substitution instance of this wff which utilizes an
entirely new constant, like so:
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(∃x)(∀y) f (x) , y ✓

(∀y) f (a) , y

Now, wemay utilize the rule (∀) and substitute the term ‘ f (a)’ for ‘y’ in ‘(∀y) f (a) , y’:

(∃x)(∀y) f (x) , y ✓

(∀y) f (a) , y f (a)

f (a) , f (a)
×

Since ‘ f (a) , f (a)’ appears on the only open brach of the tree, wemay close that branch
by the rule (, ×). Thus, the tree closes, and

(∃x)(∀y) f (x) , y

is a PT I-contradiction. (It is a PLI contradiction, too, because we require that every
function f be total on the domain of the interpretation—therefore, for every thing in
the domain, x, f (x) must be defined and must be within the domain. So there is no
thing in the domain x such that f (x) is distinct from every thing in the domain.)

6.3.3 Completing Trees

You may have been surprised, in the previous tree, to see me instantiate the term ‘ f (a)’.
This was allowed by the rule (∀), which allows us to write down a substitution instance
P[x→ t] of a universally quantified wff ⌜(∀x)P⌝, for any term ⌜t⌝.

(∀)

(∀x)P t

P[x→ t]

for any term t

Since ‘ f (a)’ is a term, we may write down a substitution instance of ‘(∀y) f (a) , y’ in
which we replace the ‘y’ bound by ‘(∀y)’ with ‘ f (a)’.

However, we must now alter our account of what it is for a tree to be complete. Our old
account, recall, went like this:
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To complete a tree:

1. Apply the relevant rules to all wffs appearing on open branches, in any
order you like.

2. If a wff ⌜P⌝ and its negation ⌜∼P⌝ appear on the same branch, then
close that branch by writing ‘×’ at the bottom of the branch.

3. If every branch closes, then you are done; in this case, we say that the
tree closes.

4. If you have applied every relevant rule to every wff on every open
branch which is not atomic or the negation of an atomic wff, and, you
have applied the rule (∀) to every universally quantified wff appear-
ing on an open branch by instantiating every constant or free variable
which appears on an open branchwith that universally quantifiedwff ,
then you are done; if, after doing this, there remains an open branch,
then we say that the tree remains open.

In this account of what it is to complete a tree, we said only that you must write down
a substitution instance of a universally quantified wff for every constant or free variable.
This leaves out the substitution instances of terms like ‘ f (a)’. So, if we kept this account
of what it is for a tree to be complete, we would have to count the following tree as
complete:

(∃x)(∀y) f (x) , y ✓

(∀y) f (a) , y a

f (a) , a

←− This tree is not complete!

But this would tell us that ‘(∃x)(∀y) f (x) , y’ is not a PT I-contradiction. However,
it is a PLI-contradiction. The reason is that we required, in our definition of a PLI
interpretation, that every function be total. But, if every function is total, then there is no
thing ‘x’ could refer to in the domain thatwouldmake ‘(∀y) f (x) , y’. For if the function
f is total, then ‘ f (x)’ must refer to something in the domain D . But if ‘y’ refers to that
thing, then ‘ f (x) , y’ would be false. So, no matter what ‘x’ refers to, there’s something
y could refer to which would make ‘ f (x) , y’ false. So the universally quantified wff
‘(∀y) f (x) , y’ is false on every x-variant interpretation; so the existentially quantified
wff ‘(∃x)(∀y) f (x) , y’ must be false.

We will fix this by introducing a new concept: that of a constant term. A term in a wff is
a constant term iff it is a term that does not contain any bound variables.
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A term of PLI, ⌜t⌝, in a wff of PLI, is a constant term if and only if no
bound variables occur within ⌜t⌝

For instance, in the wff
(∀x)R f (x, a)g(y)

‘ f (x, a)’ is not a constant term, since the bound variable ‘x’ occurs in that term. On the
other hand, ‘g(y)’ is a constant term, since only the free variable ‘y’ occurs in that term.
Similarly, in the wff:

(∃x)Gh(x) f (a, b)

‘h(x)’ is not a constant term, since the bound variable ‘x’ appears within it. ‘ f (a, b)’, on
the other hand is a constant term.

With this definition, we may emend our account of what it is for a tree to be complete
as follows.

To complete a tree:

1. Apply the relevant rules to all wffs appearing on open branches, in any
order you like.

2. If a wff ⌜P⌝ and its negation ⌜∼P⌝ appear on the same branch, then
close that branch by writing ‘×’ at the bottom of the branch.

3. If a wff of the form ⌜t , t⌝ appears at any point on a branch, then close
that branch by writing ‘×’ at the bottom of the branch.

4. If every branch closes, then you are done; in this case, we say that the
tree closes.

5. If:

(a) you have applied every relevant rule to every wff on every open
branch which is not atomic or the negation of an atomic wff;

(b) you have made all of the substitutions liscenced by the rule (=);
and

(c) you have applied the rule (∀) to every universally quanti-
fied wff appearing on an open branch by instantiating every
constant term or free variable which appears on an open branch
with that universally quantified wff;

then you are done; if, after doing this, there remains an open branch,
then we say that the tree remains open.



6.3. Trees for PLI 159

For instance, consider the following tree:

(∃x) f (x) = x ✓
(∀x)x = x a

f (a) = a

a = a

This tree is not complete because, though we have substituted the constant ‘a’ for ‘x’
in ‘(∀x)x = x’, this is not the only constant term appearing on the same branch as
‘(∀x)x = x’. There is also the constant term ‘ f (a)’. This must be substituted too before
the tree is complete.

(∃x) f (x) = x ✓

(∀x)x = x a f (a)

f (a) = a

a = a

f (a) = f (a)

Wemust alsomake sure that we havemade all the substitutions licensed by the rule (=)

before the tree is complete. ‘a = a’ tells us that we may substitute ‘a’ for ‘a’ anywhere it
appears. However, doing this would just give us back a wff which already appears on the
branch. In general, you do not have to make the substitutions licensed by (=) which
result in wffs already on the branch. However, if a substitution does not already appear
on the branch, then you must make it before the tree is complete. That means, in partic-
ular, that on the tree above, we must substitute ‘a’ for the first ‘ f (a)’ in ‘ f (a) = f (a)’,
though we needn’t substitute it for the first. When we make the requisite substitution,
we get the he following tree, which is complete:

(∃x) f (x) = x ✓

(∀x)x = x a f (a)

f (a) = a

a = a

f (a) = f (a)

a = f (a)
#
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6.4 PT I Consistency

As before, if a tree beginning with all and only the wffs in a set {P1, P2, . . . , PN} closes,
then the set {P1, P2, . . . , PN} is PT I-inconsistent. If a completed tree beginning with all
and only the wffs in the set {P1, P2, . . . , PN} remains open, then the set {P1, P2, . . . , PN}
is PT I-consistent.

Remember: it is important, in the definition of a PT I-consistent set of wffs, that the
open tree be complete. That means you must have checked off every wff which may be
checked off, you must make all of the relevant substitutions licensed by the rule (=),
and you must substitute all of the constant terms appearing on the same branch as a
universally quantified wff.

Is the set {(∀x)(Px ⊃ x = a), Pa, P f (a)} PT I-consistent? We begin the tree with
‘(∀x)(Px ⊃ x = a)’, ‘Pa’, and ‘P f (a)’ at its root:

(∀x)(Px ⊃ x = a)
Pa

P f (a)

We must apply a rule to ‘(∀x)(Px ⊃ x = a)’ by instantiating some constant term for ‘x’.
‘a’ appears on the tree with ‘(∀x)(Px ⊃ x = a)’, so it makes sense to instantiate ‘a’:

(∀x)(Px ⊃ x = a) a
Pa

P f (a)

Pa ⊃ a = a ✓

∼Pa
×

a = a

The tree has not closed, but this does not tell us that {(∀x)(Px ⊃ x = a), Pa, P f (a)} is
PT I-consistent, since the tree is not yet complete. The constant term ‘ f (a)’ also appears
on the same branch as ‘(∀x)(Px ⊃ x = a)’, so we must instantiate it as well. When we
do so, we get
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(∀x)(Px ⊃ x = a) a f (a)

Pa
P f (a)

Pa ⊃ a = a ✓

∼Pa
×

a = a

P f (a) ⊃ f (a) = a ✓

∼P f (a)
×

f (a) = a
#

The tree is now complete, and it remains open. So we can conclude that {(∀x)(Px ⊃
x = a), Pa, P f (a)} is PT I-consistent.

6.5 PT I Validity

As before, if a tree with the premises of an argument and the negation of the conclusion
of an argument at its root closes, then the argument is PT I-valid. If a completed tree
with the premises of the argument and the negation of the conclusion at its root remains
open, then the argument is PT I-invalid.

For instance, consider the PLI argument

(∀x)(∀y)x = y // (∀z)(∀w)(Rzw ⊃ Rwz)

To seewhether this argument is PT I valid, we begin a treewith the premise, ‘(∀x)(∀y)x =

y’ and the negation of its conclusion, ‘∼(∀z)(∀w)(Rzw ⊃ Rwz)’ at its root, as shown:

(∀x)(∀y)x = y

∼(∀z)(∀w)(Rzw ⊃ Rwz)

We may begin by applying the rule (∼∀) to ‘∼(∀z)(∀w)(Rzw ⊃ Rwz)’:
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(∀x)(∀y)x = y

∼(∀z)(∀w)(Rzw ⊃ Rwz) ✓

(∃z)∼(∀w)(Rzw ⊃ Rwz) ✓

∼(∀w)(Raw ⊃ Rwa) ✓

(∃w)∼(Raw ⊃ Rwa) ✓

∼(Rab ⊃ Rba)

Rab
∼Rba

We may now apply the rule (∀) to ‘(∀x)(∀y)x = y’ by writing down ‘(∀y)a = y’; and
then applying the rule (∀) to ‘(∀y)a = y’ by writing down ‘a = b’.

(∀x)(∀y)x = y a
∼(∀z)(∀w)(Rzw ⊃ Rwz) ✓

(∃z)∼(∀w)(Rzw ⊃ Rwz) ✓

∼(∀w)(Raw ⊃ Rwa) ✓

(∃w)∼(Raw ⊃ Rwa) ✓

∼(Rab ⊃ Rba)

Rab
∼Rba

(∀y)a = y b

a = b

At this point, we may substitute ‘a’ for ‘b’ in ‘Rab’, and substitute ‘b’ for ‘a’ in ‘Rba’, at
which point the tree closes.
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(∀x)(∀y)x = y a
∼(∀z)(∀w)(Rzw ⊃ Rwz) ✓

(∃z)∼(∀w)(Rzw ⊃ Rwz) ✓

∼(∀w)(Raw ⊃ Rwa) ✓

(∃w)∼(Raw ⊃ Rwa) ✓

∼(Rab ⊃ Rba)

Rab
∼Rba

(∀y)a = y b

a = b

Raa

∼Raa
×

Thus, the PLI argument

(∀x)(∀y)x = y // (∀z)(∀w)(Rzw ⊃ Rwz)

is PT I-valid.

6.6 PT I Tautologies, Contingencies, and Contradictions

As before, if a treewith ⌜∼P⌝ at its root closes, then ⌜P⌝ is a PT I-tautology. For instance,
suppose that we start a tree with ‘∼(∃x)x = x’ at its root:

∼(∃x)x = x ✓

(∀x)x , x a

a , a
×

Because the tree closes, this shows us that ‘(∃x)x = x’ is a PLI-tautology. The reason
that this is a tautology is that we do not allow our domains to be empty. So there must
always be something in the domain, and that thing will always be identical to itself.
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6.6.1 Properties of Identity

By utilizing PLI trees, we may also establish some tautologies which tell us some inter-
esting properties of the identity relation, =. Identity is what’s known as an equivalence
relation. An equivalence relation is any relation which satisfies the following three prop-
erties.

Reflexivity R is a reflexive relation on the domain D iff, for all x in D , Rxx.

(∀x)Rxx

Symmetry R is a symmetric relation on the domain D iff, for all x and y in D , if Rxy,
then Ryx.

(∀x)(∀y)(Rxy ⊃ Ryx)

Transitivity R is a transitive relation on the domain D iff, for all x, y, and z in D , if Rxy
and Ryz, then Rxz.

(∀x)(∀y)(∀z)((Rxy& Ryz) ⊃ Rxz)

We may show that = has each of these three properties with PLI trees. We can show
that identity is reflexive by showing that ‘(∀x)x = x’ is a PT I-tautology. When we start
a tree with its negation, we get the following.

∼(∀x)x = x ✓

(∃x)x , x ✓

a , a
×

Similarly, we can show that identity is symmetric by showing that ‘(∀x)(∀y)(x = y ⊃
y = x) is a PT I-tautology with the following tree.



6.6. PT I Tautologies, Contingencies, and Contradictions 165

∼(∀x)(∀y)(x = y ⊃ y = x) ✓

(∃x)∼(∀y)(x = y ⊃ y = x) ✓

∼(∀y)(a = y ⊃ y = a) ✓

(∃y)∼(a = y ⊃ y = a) ✓

∼(a = b ⊃ b = a) ✓

a = b
b , a

a , a
×

Finally, we can show that = is transitive by showing that ‘(∀x)(∀y)(∀z)((x = y& y =
z) ⊃ x = z)’ is a PLI-tautology with the following tree:

∼(∀x)(∀y)(∀z)((x = y& y = z) ⊃ x = z) ✓

(∃x)∼(∀y)(∀z)((x = y& y = z) ⊃ x = z) ✓

∼(∀y)(∀z)((a = y& y = z) ⊃ a = z) ✓

(∃y)∼(∀z)((a = y& y = z) ⊃ a = z) ✓

∼(∀z)((a = b & b = z) ⊃ a = z) ✓

(∃z)∼((a = b & b = z) ⊃ a = z) ✓

∼((a = b & b = c) ⊃ a = c) ✓

a = b & b = c ✓
a , c

a = b
b = c

a = c
×
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6.7 PT I Equivalence

If a tree starting with the sole wff ⌜∼(P ≡ Q)⌝ at its root closes, then ⌜P⌝ and ⌜Q⌝ are
PT I-equivalent. If a tree starting with the sole wff ⌜∼(P ≡ Q)⌝ at its root remains open,
then ⌜P⌝ and ⌜Q⌝ are not PT I-equivalent.

For instance, consider the wffs

(∀x)(∀y)x = y and (∃x)(∀y)x = y

The first wff says “Everything in the domain is identical to everything in the domain”.
The secondwff says “There’s something in the domainwhich is identical to everything in
the domain.” The first wff could only be true if there is exactly one thing in the domain;
and the secondwff similarly could only be true if there’s exactly one thing in the domain.
So we should expect these two wffs to be PT I-equivalent (if the tree method is any
good). And, indeed, they are. Here is the completed tree with ‘∼[(∀x)(∀y)x = y ≡
(∃x)(∀y)x = y] at its root:

∼[(∀x)(∀y)x = y ≡ (∃x)(∀y)x = y] ✓

(∀x)(∀y)x = y a
∼(∃x)(∀y)x = y ✓

(∀x)∼(∀y)x = y a

(∀y)a = y

∼(∀y)a = y

×

∼(∀x)(∀y)x = y ✓
(∃x)(∀y)x = y ✓

(∃x)∼(∀y)x = y ✓

(∀y)a = y b c

∼(∀y)b = y ✓

(∃y)b , y ✓

b , c

a = b

a = c

a , c

a , a
×
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6.8 Infinite PLI Trees

Consider the following PLI tree which begins with the wff ‘(∃x)(∀y) f (y) , x’ at its
root.

(∃x)(∀y) f (y) , x ✓

(∀y) f (y) , a a

f (a) , a

Is this tree complete? It is not. Though the constant ‘a’ has been instantiated for ‘y’
in ‘(∀y) f (y) , a’, the constant term ‘ f (a)’—which also appears on a branch with
‘(∀y) f (y) , a’—has not. In order for the tree to be complete, we must instantiate
this constant term for ‘y’ in ‘(∀y) f (y) , a’ as well.

(∃x)(∀y) f (y) , x ✓

(∀y) f (y) , a a f (a)

f (a) , a

f ( f (a)) , a

Is the tree complete now? No. The new constant term ‘ f ( f (a))’ now appears on the
samebranch as ‘(∀y) f (y) , a’. So this term, too,must be instantiated for ‘y’ in ‘(∀y) f (y) ,
a’. And when we do this, we will have a new constant term, ‘ f ( f ( f (a)))’. And it will go
on like this, forever. So the completed tree will end up being infinitely long.

(∃x)(∀y) f (y) , x ✓

(∀y) f (y) , a a f (a) f ( f (a)) f ( f ( f (a))) · · ·

f (a) , a

f ( f (a)) , a

f ( f ( f (a))) , a

f ( f ( f ( f (a)))) , a
...
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This tree is complete. For every constant term which appears on the branch will be
instantiated for ‘y’ in ‘(∀y) f (y) , a’ at some point on the tree. Since the tree does not
close, we can conclude that ‘(∃x)(∀y) f (y) , x’ is not a PT I-contradiction.

6.9 Number Claims

At Least Two

Suppose that we wish to say something that is true in all and only the interpretations in
which there are two distinct things in the domain of the interpretation. We may do this
as follows:

(∃x)(∃y)x , y

This is true on an interpretation I if and only if (∃y)x , y is true on some x-variant
interpretation Ix→α. And (∃y)x , y is true on the x-variant interpretation Ix→α
if and only if x , y is true on some y-variant of that interpretation, Ix→α,y→β. So
(∃x)(∃y)x , y is true if and only if there are two distinct things in our domain such
that x can refer to one of them and y can refer to the other. So (∃x)(∃y)x , y is true
if and only if there are at least two things in the model. (∃x)(∃y)x , y is not a PLI-
tautology, since we don’t require that our domains have more than one thing in them.

Here, we don’t need to additionally specify that y , x, since this follows from the sym-
metry of =. From ‘(∃x)(∃y)x , y’, it follows that ‘(∃x)(∃y)(x , y& y , x)’, as the
following tree demonstrates:
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(∃x)(∃y)x , y ✓
∼(∃x)(∃y)(x , y& y , x) ✓

(∃y)a , y ✓

a , b

(∀x)∼(∃y)(x , y& y , x) a b

∼(∃y)(a , y& y , a) ✓

(∀y)∼(a , y& y , a) b

∼(a , b & b , a) ✓

∼a , b
×

∼b , a ✓

b = a

a , a
×

At Least Three

Similarly, if we wish to say something that is true in all and only the PLI-interpretations
in which there are three distinct things in the domain, we may say the following:

(∃x)(∃y)(∃z)((x , y& y , z) & x , z)

Here, it is not enough to say merely that x , y and that y , z. For it could still be that
x = z. So we must rule this out by specifying that x , z. The wff above says that the
domain contains three things, all of which are distinct from one another. Of course,
there could be other things besides these three. So what the wff above says is just that
there are at least three things in the domain.

At Least Four

We could go on. Suppose that we wish to say something that’s true in all and only the
PLI-interpretations on which there are at least four things in the domain. Then, we
could say the following:

(∃x)(∃y)(∃z)(∃w)(((((x , y& x , z) & x , w) & y , z) & y , w) & z , w)
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A Challenge
See if you can come up with a wff of PLI that’s true if and only if there are
infinitely many things in the domain. (You’ll have to use more than identity.
Hint: to think it through, use an interpretationwhose domain is the counting
numbers, use the predicate Gxy for ‘x is greater than y(x > y)’, and try to
think of a collection of claims which will tell you that there are an infinite
number of numbers. A further hint: translate the claims “nothing is greater
than itself ”, “every number has some number that’s greater than it”, and then
think about how, with the foregoing claims laid down, you could rule out
‘loops’ of greaterness, like, e.g., Gab, Gbc, and Gca.)

At Least Two Ps

Now, suppose that we wish to say, not just that there’s at least two things in the domain,
but additionally, that there’s at least two things that are P in the domain. We can say that
by saying, first, that there’s at least two things, and next, that those two things are P:

(∃x)(∃y)((x , y& Px) & Py)

At Least Three Ps

Similarly, suppose that we wish to say that there are at least three things that are P in the
domain. We can say that by saying, first, that there’s at least three things, and next, that
those three things are P:

(∃x)(∃y)(∃z)(((((x , y& y , z) & x , z) & Px) & Py) & Pz)

NoMoreThan One

The previous translations put a lower bound on the number of things in the domain.
Suppose that, instead, we wish to be an upper bound on the number of things in the
domain. Suppose that we wish to say that there is nomore than one thing in the domain.
If we wish to say this, then we could just say that there’s something which everything in
the domain is identical to. If everything in the domain is the same as that one thing,
then there can only be one thing in the domain. Thus,

(∃x)(∀y)y = x
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translates “there is at least one thing in the domain.” (Note: since we require the domain
to contain at least one thing, this is equivalent to saying that there is exactly one thing
in the domain.)

NoMoreThan Two

Suppose, on the other hand, that we wish to say that there are no more than two things
in the domain. We may say that by saying that there are two things x and ysuch that, for
any thing in the domain z, z is either identical to x or z is identical to y.

(∃x)(∃y)(∀z)(z = x ∨ z = y)

This could also be true if there is but one thing in the domain. So it doesn’t say that
there are exactly two things in the domain. Rather, it says that there are no more than
two things in the domain.

NoMoreThanThree

We could go on. For instance, the following wff says that there are no more than three
things in the domain.

(∃x)(∃y)(∃z)(∀w)((w = x ∨ w = y) ∨ w = z)

In English, this says that there are three things, x, y, and z, such that every thing in the
domain is either identical to x, or it’s identical to y, or it’s identical to z. Again, this could
be true if there’s only one or two things in the domain (in that case, either x = y or y = z
or x = z). So it doesn’t say that there are exactly three things in the domain. But it does
say that there are no more than three.

NoMoreThan One P

If we wish to say that there is no more than one thing which is P, then we may say that
there is some thing such that, if anything is P, then that thing is it.

(∃x)(∀y)(Py ⊃ y = x)

Note that this doesn’t entail that something is P. The abovewff is true in an interpretation
in which nothing is P (since, no matter what we let y refer to, ‘Py’ will be false, so the
conditional ‘Py ⊃ y = x’ will be true). What it does guarantee is that either nothing is
P, or exactly one thing is P. That is: it guarantees that no more than one thing is P.
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NoMoreThan Two Ps

In a similar fashion, if we wish to say that there is no more than two things which are P,
then we may say that there are two things such that, if anything is P, then that thing is
identical to one of them.

(∃x)(∃y)(∀z)(Pz ⊃ (z = x ∨ z = y))

Again, this doesn’t guarantee that there are any Ps; the above wff is true if nothing is P.
It is also true if there is only one thing which is P; and it is true if there are two things
that are P. It is only false if there are three or more things which are P. For suppose
that there are three things which are P—call them ‘α’, ‘β’, and ‘γ’. Then, if x or y refer
to anything other than α, β, or γ, then ‘(∀z)(Pz ⊃ (z = x ∨ z = y))’ will be false,
since we may let z refer to α, and the antecedent will be true but the consequent will be
false. So the conditional will not be true no matter what z refers to. So the universally
quantified claim ‘(∀z)(Pz ⊃ (z = x ∨ z = y))’ will be false. So x and y must both
refer to either α, β, or γ. But then, whichever one is left over (whichever one neither
x nor y refer to), let z refer to that, and then ‘Pz ⊃ (z = x ∨ z = y)’ will be false. So
‘(∀z)(Pz ⊃ (z = x ∨ z = y))’ will be false. So, if there are three or more things which
are P, then ‘(∃x)(∃y)(∀z)(Pz ⊃ (z = x ∨ z = y))’ will be false.

NoMoreThanThree Ps

We could go on. If we wish to say that there is no more than three things which are P,
then we may say that there are three things such that, if anything is P, then that thing is
identical to one of them.

(∃x)(∃y)(∃z)(∀w)(Pw ⊃ ((w = x ∨ w = y) ∨ w = z))

Exactly One

Suppose that we wish to put both an upper bound and a lower bound on the number
of things in the domain. In the case of one, saying that there is exactly one thing in the
domain is equivalent to saying that there is nomore than one thing in the domain (since
we required that our domains have at least one thing in them). Andwe have already seen
that the way to say that there is no more than one thing in the domain is:

(∃x)(∀y)y = x
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∼[(∃x)(∀y)y = x ≡ ((∃x)x = x & (∃x)(∀y)y = x)] ✓

(∃x)(∀y)y = x
∼((∃x)x = x & (∃x)(∀y)y = x) ✓

∼(∃x)x = x ✓

(∀x)x , x a

a , a
×

∼(∃x)(∀y)y = x
×

∼(∃x)(∀y)y = x
(∃x)x = x & (∃x)(∀y)y = x ✓

(∃x)x = x
(∃x)(∀y)y = x

×

Figure 6.3: : The PLI tree establishing that ‘(∃x)(∀y)y = x’ and ‘(∃x)x =
x & (∃x)(∀y)y = x’ are PT I-equivalent.

However, we could also just conjoin the claim that there is at least one thing with the
claim that there is no more than one thing in the domain, as follows:

(∃x)x = x & (∃x)(∀y)y = x

These two wffs are PLI-equivalent, and PT I-equivalent, as the PLI tree shown in figure
6.3 establishes.

Exactly Two

Suppose that we wish to say that there are exactly two things in the domain. Then, we
may just conjoin the claims that there are at least two things with the claim that there
are no more than two things, as follows:

(∃x)(∃y)x , y& (∃x)(∃y)(∀z)(z = x ∨ z = y)

This works, but it’s a bit more complicated than it needs to be. We may alternatively
just say that there are two things which are non-identical, and that anything else in the
domain is identical to one of them:

(∃x)(∃y)(x , y& (∀z)(z = x ∨ z = y))

These two claims are PLI equivalent. The tree which establishes this equivalence is in-
credibly complicated, but I’ve reproduced it for you in figure 6.4.
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∼{[(∃x)(∃y)x , y & (∃x)(∃y)(∀z)(z = x ∨ z = y)] ≡ [(∃x)(∃y)(x , y & (∀z)(z = x ∨ z = y))]} ✓

(∃x)(∃y)x , y & (∃x)(∃y)(∀z)(z = x ∨ z = y) ✓
∼(∃x)(∃y)(x , y & (∀z)(z = x ∨ z = y)) ✓

(∃x)(∃y)x , y ✓
(∃x)(∃y)(∀z)(z = x ∨ z = y) ✓

(∃y)a , y ✓

a , b

(∃y)(∀z)(z = c∨ z = y) ✓

(∀z)(z = c∨ z = d) a b

(∀x)∼(∃y)(x , y & (∀z)(z = x ∨ z = y)) a c

∼(∃y)(a , y & (∀z)(z = a∨ z = y)) ✓

(∀y)∼(a , y & (∀z)(z = a∨ z = y)) b

∼(a , b & (∀z)(z = a∨ z = b)) ✓

∼a , b
×

∼(∀z)(z = a∨ z = b)

∼(∃y)(c , y & (∀z)(z = c∨ z = y)) ✓

(∀y)∼(c , y & (∀z)(z = c∨ z = y)) d

∼(c , d & (∀z)(z = c∨ z = d)) ✓

∼c , d ✓

c = d

a = c∨ a = d

a = c∨ a = c ✓

b = c∨ b = d

b = c∨ b = c ✓

a = c

b = c

a = b
×

b = c

a = b
×

a = c

b = c

a = b
×

b = c

a = b
×

∼(∀z)(z = c∨ z = d)
×

∼[(∃x)(∃y)x , y & (∃x)(∃y)(∀z)(z = x ∨ z = y)] ✓
(∃x)(∃y)(x , y & (∀z)(z = x ∨ z = y)) ✓

(∃y)(a , y & (∀z)(z = a∨ z = y)) ✓

a , b & (∀z)(z = a∨ z = b) ✓

a , b
(∀z)(z = a∨ z = b)

∼(∃x)(∃y)x , y ✓

(∀x)∼(∃y)x , y a

∼(∃y)a , y ✓

(∀y)∼a , y b

∼a , b
×

∼(∃x)(∃y)(∀z)(z = x ∨ z = y) ✓

(∀x)∼(∃y)(∀z)(z = x ∨ z = y) a

∼(∃y)(∀z)(z = a∨ z = y) ✓

(∀y)∼(∀z)(z = a∨ z = y) b

∼(∀z)(z = a∨ z = b)
×

Figure 6.4: : The PLI tree which establishes that ‘(∃x)(∃y)x , y& (∃x)(∃y)(∀z)(z =
x ∨ z = y)’ and ‘(∃x)(∃y)(x , y& (∀z)(z = x ∨ z = y))’ are PT I-equivalent.
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ExactlyThree

We could go further. Here’s a way of saying that there are exactly three things in the
domain.

(∃x)(∃y)(∃z)(((x , y& y , z) & z , z) & (∀w)((w = x ∨ w = y) ∨ w = z))

This wff says: 1) there are three things; 2) those things are distinct; and 3) everything
in the domain is identical to one of them. And this tells us that there are exactly three
things in the domain.

Exactly One P

To say that there is exactly one thing which is P, we may say that there is something
which is P, and then add that anything else that’s P must be identical to it:

(∃x)(Px & (∀y)(Py ⊃ y = x))

Exactly Two Ps

Similarly, to say that there are exactly two distinct things which are P, we may say that
there are two things which are P, and then add that anything else that’s P must be iden-
tical to one of them.

(∃x)(∃y)(x , y& (Px & (Py& (∀z)(Pz ⊃ (z = x ∨ z = y)))))

ExactlyThree Ps

Similarly, to say that there are exactly three things which are P, we say that there are
three distinct things which are P, and then add that anything else which is P must be
identical to one of them.

(∃x)(∃y)(∃z)(x , y& (x , z & (y , z & (Px & (Py& (Pz & (∀w)(Pw ⊃ (w = x∨ (w = y∨w = z)))))))))
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6.10 The Only

Suppose that we wish to translate claims like

James is the only person in the class taller than 7 feet.

If we have the following partial PLI-interpretation,

I p =


D = people in the class

j = James
Tx = x is taller than 7 feet

then we may translate this sentence of English by saying two things. First, we must say
that James is taller than 7 feet. This part of the translation is easy:

T j

Then, we must say that he is the only one taller than 7 feet. We can accomplish this
within PLI by saying that all people who are taller than 7 feet are identical to James.

(∀x)(T x ⊃ x = j)

Thus, the following sentence will translate “James is the only person in the class taller
than 7 feet”:

T j & (∀x)(T x ⊃ x = j)

In general, we may translate claims of the form “a is the only P” as follows:

Pa & (∀x)(Px ⊃ x = a)

Suppose that we wish to translate “Only Bob and Eric went to the party”, given the fol-
lowing partial PLI-interpretation:

Ip =


D = contextually salient people
b = Bob
e = Eric

Px = x went to the party

We may do this as follows:

(Pb & Pe) & (∀y)(Py ⊃ (y = b∨ y = e))
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6.11 Definite Descriptions

Suppose that we wish to translate a sentence like

The King of France is bald.

In order to attempt to translate this claim, we should think about what it’s saying. It
appears to be saying:

1. There is a King of France (the existence claim);

2. He is the only King of France (the uniqueness claim); and

3. He is bald (the predication claim).

Our translation should include these three elements of the original claim. Butwe already
know how to say these three things in PLI. Suppose that we have the following (partial)
PLI-interpretation,

Ip =


D = the set of people

Kx = x is King of France
Bx = x is bald

Then, I submit, “The King of France is bald” may be translated by the wff

(∃x)((Kx & (∀y)(Ky ⊃ y = x)) & Bx)

In this wff, the claim that there is a King of France (the existence claim) is made by:

(∃x)((Kx . . .

The uniqueness claim is made by:

. . . (∀y)(Ky ⊃ y = x) . . .

And the predication claim (that he is bald), is made by:

. . . Bx . . .

In general, if we wish to translate a definite description of the form

The P is Q.
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Then we may do so with a wff of the following form:

(∃x)((Px & (∀y)(Py ⊃ y = x)) & Qx)

For instance, suppose that we wish to translate

The owner is tired.

given the following (partial) PLI-interpretation:

I p =


D = the set of people under discussion

Ox = x is an owner
Tx = x is tired

Then, we may do so by saying:

1. There is an owner: (∃x)((Ox . . . ;

2. He is the only owner: . . . (∀y)(Oy ⊃ y = x) . . . ; and

3. He is tired: . . .T x . . . .

Thus, “The owner is tired” is translated by:

(∃x)((Ox & (∀y)(Oy ⊃ y = x)) & T x)



Chapter 7

Metatheory for Sentence Logic

Wehave now learned all of the logical systemswhichwe are going to learn in this course.
In part, learning about these logical systems consisted in learning new languages—first,
the language SL, then the language PL, and finally, the language PLI—and learning
a theory about the logical relations between (sets of) the sentences (or wffs) of those
languages. In this part of the course, we will begin thinking about the logical theories
we’ve been learning up to this point. In order to do so clearly, it will be important that
we get clear on some important distinctions. The first is the distinction between using
an expression of language and merely mentioning it.

7.1 Use&Mention

Consider the following pair of sentences:

1. ‘Zoë’ is a name.

2. Zoë is a name.

The first sentence is true. It says of the string of Arabic characters, or the word, ‘Zoë’ that
that string of characters or that word functions as a name in English. And this is true.
The second sentence, however, is false. That sentences says of the person Zoë that she is
a name. But that is false. Zoë has a name—‘Zoë’—but she is not herself a name.

This points to an important distinction between what takes place when we use a piece of
language to talk about something non-linguistic—for instance, when we use the name

179
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‘Zoë’ to talk about the person Zoë—and what takes place when we mention a piece of
language to talk about it—that is, to talk about that piece of language itself.

When we are being careful, we mark this distinction by placing single quotation marks
around the piece of language that we wish to speak about. For instance, in sentence (1),
we are not attempting to use the name ‘Zoë’ to talk about the person Zoë. Rather, we are
merely mentioning the name ‘Zoë’ to talk about it. On the other hand, in the sentence
(2), we are not talking about the word ‘Zoë’. Rather, we are merely using that word to
talk about something non-linguistic: the person Zoë.

7.2 Object Language&Metalanguage

Sometimes, we may want to use one language to talk about another language. For in-
stance, we may want to use English to talk about the language Spanish. We could, for
instance, use the language English to say what a word of Spanishmeans, as when we say:

3. ‘Gato’ is the Spanish word for cat.

In this case, we say that the language we are talking about is the object language. And we
say that the language we are using to talk about the object language is themetalanguage.

The object language is the language we are talking about.

The metalanguage is the language we are using to talk about
the object language.

Thus, in sentence (3) above, the object language is Spanish—it is the language we are
talking about—and the metalanguage is English—it is the language we are using to talk
about Spanish.

Which language is the object language and which is the metalanguage is not fixed in
stone. It depends upon which language we happen to be using and which language we
happen to be talking about (supposing that we are talking about a language at all—if
we are not talking about any language, then there will be no object language and no
metalanguage). For instance, I could use Spanish to talk about the language English, as
in:

4. ‘Cat’ es la palabra inglésa por gato.
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(In English, this sentence says that the English word ‘cat’ is the English word for cat.) In
this example, the object language is English, and the metalanguage is Spanish.

In all of the examples we will be concerned with in this part of the course, we will be
taking the object language to be one of the logical languages we have learned about—
either SL, or PL, or PLI. And our metalanguage will be English—though we will add
to English some additional expressions for talking about the wffs of our object languge.
For instance, one addition to English will be metavariables.

7.3 Metavariables

Throughout the course, I have been utilizing metavariables to talk about arbitrary
pieces of the languages SL, PL, or PLI. I am calling these variables ‘metavariables’ be-
cause they are variables that I am using in the metalanguage—English—to talk about
bits of language in the object language—S L, PL, or PLI. These are like the variables
which show up in PL and PLI, except that they are not a part of the language PL or
PLI. In general, a variable is something which can take on various values. For in-
stance, in PL, a variable ‘x’ can take on as a value anything which is in the domain D

of our PL-interpretation. The variable height (in cm) is a variable which can take any
positive number, depending on the height of the thing we are considering; so it’s values
are positive real numbers.

For metavariables, the potential values will be different bits of the object language. To
review, we have been using the following conventions regarding metavariables:

1. Boldface uppercase letters like ‘P’, ‘Q’ and ‘R’ are used as metavariables whose
potential values arewell-formed formulae of the logical languagewe are interested
in.

2. Uppercase script letters like ‘F ’ or ‘H ’ are used asmetavariables whose potential
values are predicates of PL or PLI.

3. Boldface lowercase letters from ‘a’—‘e’, like ‘a’, ‘b’, and ‘c’ are used as metavariables
whose potential values are constants of PL or PLI.

4. Boldface lowercase ‘f’, ‘g’, and ‘h’ are used as metavariables whose potential values
are function symbols of PLI.

5. Boldface lowercase ‘t’ (perhaps with subscripts) is used as a metavariable whose
potential values are terms of PL or PLI.

6. Boldface lowercase ‘x’, ‘y’, ‘z’, or ‘w’ are used as metavariables whose potential
values are variables of PL or PLI.
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To these established conventions, let me add one more:

7. UppercaseGreek characters like ‘Γ’ and ‘∆’ are used asmetavariableswhose values
are sets of well-formed formulae of the language language we are interested in.

7.3.1 Use and Mention with Metavariables

Think back to the definition of well-formed formulae I provided for SL. Suppose that I
want to say that, if you have two strings of characters, both of which are wffs, and you
stick an ampersand between them and enclose the result in parenthases, then what you
get is a wff. Here’s one attempt at saying that:

If ‘P’ is a wff of SL, then ‘∼P’ is a wff of SL.

But this doesn’t say what I wanted to say. In this, when I write “P”, I am mentioning the
metavariable ‘P’. This metavariable is a part of the metalanguage. So what it says is that,
if the metavariable ‘P’ is a wff of SL, then... But I wasn’t trying to talk about a piece of
the metalanguage. I was trying to talk about a piece of the object language.

Here’s a trick to get around this trouble: I may introduce a kind of quotation mark that
I’ve already been using for the entire course: this is known as corner quotation, orQuine
quotation, afterW.V.O. Quine, who first introduced it. A corner quoted expression ‘ ⌜P⌝’
works like this: itmentions the bit of language which is the value of the metavariable ‘P’.
Thus if P takes the value ‘(A ⊃ F)’, then ‘ ⌜P⌝’ refers to ‘(A ⊃ F)’.

More generally, expressions like ‘ ⌜(P & Q)⌝’ refer to the piece of language that you get
when you concatenate an open parenthasis ‘(’ with the value of themetavariable ‘P’, with
‘ & ’, with the value of the metavariable ‘Q’ with a closed parenthasis ‘)’. So, for instance,
if the metavariable ‘P’ takes the value ‘(A∨ B)’ and the metavariable ‘Q’ takes the value
‘(C ≡ D)’, then ‘ ⌜(P & Q)⌝’ refers to ‘(A∨ B) & (C ≡ D)’.

Consider the following claim (which is true):

⌜‘P’⌝ is a name for ⌜P⌝.

To think about what this is saying, think about what will happen if we substitute some
expression, say ‘(A∨∼B)’, for themetavariable ‘P’. If we do this, then each pair of corner
quotes will turn into regular quotes, and we will get the following:

“(A∨ ∼B)” is a name for ‘(A∨ ∼B)’.
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This says that the quoted expression “(A ∨ ∼B)” is a name for the wff ‘(A ∨ ∼B)’. And
this is true. (In the first part of the sentence, I mention the quoted expression to talk
about it—the singly-quoted expression—and in the second part of the sentence, I use
the singly quoted expression to talk about the unquoted wff of SL.)

On the other hand, consider the following claim (which is false):

‘ ⌜P⌝’ is a name for ⌜P⌝.

Here, ‘ ⌜P⌝’ refers to the concatenation of the symbols ‘⌜’, ‘P’, and ‘⌝’. It is therefore talking
about a bit of the metalanguage. To think about what the claim is saying, think about
what will happen if we substitute some expression, say ‘(A ∨ ∼B)’, for the metavariable
‘P’:

‘ ⌜P⌝’ is a name for ‘(A∨ ∼B)’.

While the second set of corner quotes change to regular quotes, the first pair of cor-
ner quotes do not, since they are not being used; rather, they are being mentioned. The
subject of the sentence is a name for the sequence of symbols: ‘⌜’, followed by ‘P’, fol-
lowed by ‘⌝’. And this is not a name for any wff of SL. It is a name for a sentence of the
metalanguage, not a sentence of the object language.

7.4 Syntax and Semantics

When we learned about our three languages, SL, PL, and PLI, we were careful to dis-
tinguish between those parts of the language that had to do merely with the form of the
wffs of the language—what we called the ‘syntax’ of the language—and the parts of the
language that told us something about the meaning of the wffs of the language—what
we called the ‘semantics’ of the language.

In general, syntactic features are features of the language that have nothing to do with
the meaning or the interpretation of the symbols appearing in the language. In order
to know that ‘(A ⊃ ∼B)’ is a wff of SL, you didn’t have to know anything about what
‘(A ⊃ ∼B)’means. Whether this is a wff is an entirely syntactic matter. It is just a matter
of the symbols that appear and the order they appear in.

To make this point clearer, let’s consider the following language, which we can call ‘KL’
(for ‘Kooky Language’). The vocabulary of KL consists of the following symbols:

1. Shapes:
2, #,△
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2. Parenthases (, )

And we can specify which ways of stringing together these symbols counts as a well-
formed formula with the following definition:

1. ‘#’ is a wff of KL.

2. If ⌜P⌝ is a wff of KL, then ⌜(2P2)⌝ is a wff of KL.

3. If ⌜P⌝ is a wff of KL, then ⌜(△P△)⌝ is a wff of KL.

4. Nothing else is a wff of KL.

Now, we can say whether ‘(2(△#△)2)’ is a wff of KL (it is), and we can say whether
‘(222)’ is a wff of KL (it is not). And we can say all of this without having any idea
about the meaning of either of these wffs (in fact, they have no meaning at all; I didn’t
define any semantics for this language—it’s all syntax).

Syntactic features are features of expressions that can be understood with-
out knowing anything about the meaning of those expressions.

Semantic features are features of expressions that can only be understood if
you know something about the meaning of those expressions.

Note, now, that whether a given SL tree or PL tree closes is an entirely syntactic matter.
Given an SL or PL tree, we can figure out whether that tree abides by the rules for trees
without knowing anything about what the expressions appearing in that tree mean.

To make that clearer, we could define up tree rules for our kooky language KL.

(2)

(2P2) ✓

P

This rule says “if you have a wff of the form ⌜(2P2)⌝, then youmay, at any point, check
that wff off and extend every open branch on which the wff lies by writing down ⌜P⌝ at
the bottom of that branch”.
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(△)

(△P△) ✓

# P

This rule says “if you have a wff of the form ⌜(△P△)⌝, then you may, at any point, check
that wff off and split every open branch on which the wff lies by writing down ⌜#⌝ on
the left-hand-side and writing down ⌜P⌝ on the right-hand side.”.

(#)

#
×

This rule says: “If, at any point, a circle appears by itself on a branch, then close that
branch by writing ‘×’ at the bottom of that tree.

With these rules, we can go on to say whether a tree is correct and complete in a way
precisely similar to the way that we did in SL. For instance, the following tree, beginning
with ‘(△(2#2)△)’ at its root, is correct and complete

(△(2#2)△) ✓

#
×

(2#2) ✓

#
×

We can know all this without knowing anything at all about the meaning of the expres-
sions showing up on this tree (after all, these expressions don’t have any meaning!).
Whether the tree is correct and complete, and whether it closes, is entirely a matter of
whether it conforms to purely syntactic rules. And precisely the same thing goes for the
trees of SL, PL, and PLI.

Whether a tree closes is an entirely syntactic question. In order to answer
this question, we need not know anything about what the wffs appearing on
the tree mean—i.e., we need not know anything about the conditions under
which the wffs are true or false.
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On the other hand, whether an argument is valid, or whether a set of wffs is consistent, is
not a purely syntactic question. In order to answer the question of whether an argument
of SL is SL-valid, wemust know something about the conditions under which those wffs
are true and false.

For instance, we are not in a position to say whether the KL-argument

# // (2#2)

is KL-valid or KL-invalid until we know something about the circumstances in which
the wffs of KL are true or false. And we are not in a position to say whether the set of
wffs of KL

{(△(2#2)△), (2#2), #}
is KL-consistent or KL-inconsistent until we know what these wffs mean.

Whether an argument is valid is not a purely syntactic question. In order
to answer this question, we must know something about the meaning of the
wffs of SL.

7.5 Syntactic Validity and Semantic Validity

The central question we will be concerned with during this part of the course is whether
the purely syntactic rules we have set up for the trees of SL (and PL) are good ones. That
is: whether what they tell us about whether an argument of SL (or PL) is valid is correct.

To have a convenient shorthand for discussing this question, let’s introduce a bit of no-
tation. In the first place, we will introduce a convenient shorthand for the claim that
an argument of SL with the set of premises Γ and the conclusion ⌜P⌝ is S T -valid or
S T -invalid. If (and only if) the argument with the set of premises Γ and the conclusion
⌜P⌝ is S T -valid, we will write ⌜Γ |−S L P⌝.

⌜Γ |−S L P⌝ means that every correct SL tree beginning with all and only the
wffs in Γ and ⌜∼P⌝ at its root closes.

If (and only if) the argument with the set of premises Γ and the conclusion ⌜P⌝ is SL-
valid, we will write ⌜Γ |=SL P⌝

⌜Γ |=SL P⌝means that there is no truth-value assignment whichmakes every
wff in Γ true and makes ⌜P⌝ false.
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And similarly, to make the claim that every PL tree with the wffs in Γ and ⌜∼P⌝ at its
root closes, I will write

Γ |−PL P

And tomake the claim that the argument with the premise set Γ and the conclusion ⌜P⌝
is PL-valid, I will write

Γ |=PL P

⌜Γ |−PL P⌝ means that every correct PL tree beginning with all and only the
wffs in Γ and ⌜∼P⌝ at its root closes.

⌜Γ |=PL P⌝ means that there is no PL-interpretation which makes every wff
in Γ true and makes ⌜P⌝ false.

If it is clear from context which logical system we are talking about (or if I wish to talk
about any logical system without specifying one specifically), then I will omit the sub-
scripted ‘SL’ or ‘PL’, and just write

Γ |− P

for the claim that the argument with the premise set Γ and the conclusion P is syntacti-
cally valid (i.e., tree-valid); and I will sometimes similarly just write

Γ |= P

for the claim that the argument with the premise set Γ and the conclusion P is semanti-
cally valid.

7.6 Soundness and Completeness of the Tree Method

Thepoint of this part of the course is to prove that the treemethod for testing for validity
is a good one. However, there are two ways that the tree method could be good (and
two corresponding ways that it could be bad) that it will be useful to clearly separate.
In the first place, it could be that, whenever the tree method tells us that an argument
is valid, that argument is valid. That is, it could be that, whenever a tree beginning with
the premises in Γ and ⌜∼P⌝ at its root closes, the argument from the premises in Γ to the
conclusion ⌜P⌝ is semantically valid. If this is so, then we will say that the tree method
is sound.
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soundness The tree method is sound iff, for any set Γ and wff ⌜P⌝:

if Γ |− P then Γ |= P

If the tree method is sound, then this means that we can always trust what it has to say
when it tells us that an argument is valid. However, it does not automatically follow
that we can always trust what it has to say about invalidity. For instance, suppose that
we have a syntactic account of validity which tells us that only one argument of SL is
valid: A & B // A. For every other argument of SL, the syntactic account says that it is
invalid. Such an account would be sound—we could always trust it if it tells us that an
argument is valid, since A & B // A is an SL-valid argument. However, we could not
always trust it when it told us that an argument is invalid. It would, for instance, tell us
that the argument A & B // B is invalid; but this is incorrect. That argument is valid. So
even though we could trust what this account tells us about validity, we could not trust
what it tells us about invalidity.

We will say that the tree method is complete if we can trust what it has to say about
invalidity. That is, we will say that the tree method is complete iff, whenever the tree
method says that an argument is invalid, it is invalid. That is: the treemethod is complete
iff, whenever a tree beginning with the premises in Γ and ⌜∼P⌝ at its root remains open,
the argument from the premises in Γ to the conclusion ⌜P⌝ is semantically invalid.

completeness The tree method is complete iff, for any set Γ and wff ⌜P⌝:

if Γ |= P then Γ |− P

Note that, just because the tree method is complete, this doesn’t mean that the tree
method is sound. We could have an account of validity that told us that every argu-
ment was valid except for A ⊃ B // B ⊃ A, which it told us was invalid. Now, we could
trust what this account has to tell us about invalidity, since A ⊃ B // B ⊃ A is invalid.
However, we could not trust what it has to tell us about validity, since this account would
tell us that A ⊃ B // B is valid, which is false.

So neither soundness or completeness is sufficient for the other. If an account of validity
is sound and complete, then we can trust everything that it has to say about validity and
we can trust everything that it has to say about invalidity. So if the tree method is both
sound and complete, then we can trust it, no matter what it tells us about the validity
or invalidity of an argument. It will tell us that an argument is valid if and only if the
argument is valid. The goal of this portion of the class will be to prove that the tree
method is both sound and complete.

Recall: our goal in this section of the course is to establish that an argument of SL is SL-
valid if and only if it is S T -valid (and similarly for PL-validity and PT -validity). That
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is: we wish to show that the tree method will tell us that an argument is valid when and
only when that argument really is valid. Using the notation from last time, we may say
that the argument from a set of premises Γ to the conclusion P is SL-valid by writing
⌜Γ |=S L P⌝, and we may say that the tree beginning with only the wffs in Γ and ∼P at
its root closes by writing ⌜Γ |−S L P⌝.

Then, we saw that we could split the claim we wish to prove up into two separate parts:

Soundness. If an argument is S T -valid, then it is SL-valid.

If Γ |−S L P then Γ |=S L P

Completeness. If an argument is SL-valid, then it is S T -valid.

If Γ |=S L P then Γ |−S L P

Establishing these two claims is our goal in this section of the course. In order to ac-
complish this goal, we will need to make use of some logical methods of reasoning.

For instance, we will make use of logical inference rules like modus ponens.

Modus Ponens

if P, then Q

P

▷ Q

This rule says the following: if you know that if P, then Q, and you know that P, then
you may infer that Q. We know from SL that such a method of inference will never take
us from truth to falsehood (that is: we know that the method of inference is valid). So
we will feel free to use it when we offer our proofs of soundness and completeness.

For another example, wewill need tomake use of themethod of conditional proof, which
some of you may have encountered in phil 0500:
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Conditional Proof

P
...

Q

▷ if P, then Q

This rule says the following: if you assume that P, and from this assumption, you are able
to conclude that Q, then youmay conclude (outside of the scope of any assumption) that
the conditional if P, then Q is true.

However, we will need more than simple logical methods of reasoning like this. We will
also need a proof technique known as mathematical induction.

7.7 Mathematical Induction

Suppose that you have an infinite number of dominoes, all arranged in a line. The only
thing you know about these dominoes are the following:

1. The first one falls.

2. If a domino falls, then the domino which comes after it falls, too.

Can you work out whether all of the dominoes will fall? It looks like you can. For you
know that the first domino falls. And you know that, if the first domino falls, then the
second domino falls as well. So, bymodus ponens, the second domino falls. So now you
know that the second domino falls. And you know that, if the second domino falls, then
the third domino falls too. So, by modus ponens, you know that the third domino falls.
So you know that the third domino falls. And you know that, if the third domino falls,
then the fourth domino falls too. So, by modus ponens, then fourth domino falls. So
you know that the fourth domino falls. And you know that, if the fourth domino falls,
then the fifth domino falls too...

We can continue reasoning in this way forever, without end. If we do so, then we will
have proven that every domino falls. So, from claims like (1) and (2) above, we may
work out that every domino falls.

Now that we know that, from claims like (1) and (2), it follows that every domino falls,
it’s not really important that we go through the steps of reasoning it through that every
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domino will fall, given (1) and (2). We could simply look at (1) and (2) and conclude
straight away that every domino will fall. And if we were able to establish that (1) and
(2) are true, then we would have already established that it is true that every domino
falls.

This is the method of mathematical induction. In general in mathematical induction,
we have some infinite list of things, and we wish to show that every thing in our infinite
list has some property. In order to do that, we show two things:

1. The first item on the list has the property.

2. If an item on the list has the property, then so does the item after it on the list.

Just like with the dominoes, once we’ve shown these two claims, we will have already
shown that every item on the list has the property. For we could just run through the
very same kind of reasoning that we went through above with respect to the dominoes.
From (1), we know that the first item on the list has the property. And, from (2), we
know that, if the first item on the list has the property, then the second item on the list
has the property, too. So, bymodus ponens, we know that the second item on the list has
the property. And, from (2), we konw that, if the second item on the list has the property,
then the third item on the list has the property, too. So, bymodus ponens, we know that
the third item on the list has the property... And we could just go on reasoning in this
fashion, forever, without end. And, if we did so, then we would have established that
every item on the list has the property.

7.7.1 Terminology

That’s really all that there is tomathematical induction. The only thing left to learn about
it are some common bits of terminology that get used when discussing it.

In the first place, we have a given infinite list. We say that this list is the list on which
we are doing the induction. Since the list may change from mathematical induction to
mathematical induction, the list on which we are doing the induction may change from
induction to induction.

We then have some property that we are trying to show that every item on the list has.
This property is known as the inductive property. The inductive property is the prop-
erty that we are trying to show that every item on the list has.

We show that every item on the list has the inductive property by showing two things:
firstly, that the first item on the list has the property; and secondly, that, for any k, if the
kth item on the list has the property, then the k + 1st item on the list has the property
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too. The first thing we show is known as the basis step. The second thing we show is
known as the inductive step.

1. The basis step establishes that the first item on the list has the inductive property.

2. The inductive step establishes that, for any k, if the kth item on the list has the
inductive property, then the k + 1st item on the list has the inductive property,
too.

As we’ve seen above, if we prove the basis step and the inductive step, then we will have
proven that every item on the list has the inductive property.

Proving the basis step is usually not that complicated. However, we should say some-
thing about how to prove the inductive step. The way we will prove the inductive step is
by using conditional proof.

The Inductive Step

the kth item on the list has the inductive property.
...

the k + 1st item on the list has the inductive property.

▷ For any k, if the kth item on the list has the property,

then the k + 1st item on the list has the property

That is, we will assume that the kth item on the list has the inductive property; and, from
this assumption, wewill prove that the k+ 1st itemon the list has the inductive property.
This assumption that we will make is known as the inductive hypothesis. That is: the
inductive hypothesis is that the kth item on the list has the inductive property.

In the inductive hypothesis, we assume that, for an arbitrary number k, the kth item on
the list has the property. In order for our assumption to be about an arbitrary number
k, we must not assume anything at all about the number k. If, from the assumption that
the kth item on the list has the property, we can show that the k + 1st item on the list
has the property—for an arbitrary k—then we will have shown that for any k, if the kth
item on the list has the property, then the k + 1st item on the list has the property, too.
We will have shown this because, if we do not assume anything at all about the number
k, then we know that our conditional proof will work for any number k.



7.7. Mathematical Induction 193

7.7.2 Examples of Mathematical Induction

Suppose that we wish to prove the following claim:

Claim 1. For every counting number n, the result of adding all counting numbers less than
or equal to n is n · (n + 1)/2.

1 + 2 + 3 + · · ·+ n =
n · (n + 1)

2

We may establish this claim by using mathematical induction. To see how to do so,
notice that the claim we wish to establish has the logical form of

(∀n)Pn

That is: for any number n, n has a certain property, P. This property P is the inductive
property. It is the property of the sum of all numbers less than or equal to n being equal
to n times n + 1 divided by 2.

Pn def
= 1 + · · ·+ n =

n · (n + 1)
2

To establish our claim bymathematical induction, wemust first think about what the list
is that we are doing induction on. That list is just the list of all of the natural numbers.
That is, we are doing induction on the list 1, 2, 3, 4, 5, 6, 7, . . . .

To begin with, we must first establish the basis step. That is, we must show that the first
item on our list has the property.

Basis Step. If n = 1, then

n · (n + 1)
2

=
1 · (1 + 1)

2
=

2
2
= 1

So, the claim holds if n = 1.

Next, we must prove the inductive step. We do so by making an inductive hypothesis:
that, for an arbitrary k, k has the inductive property. From this assumption, we derive
the assumption that k + 1 has the property as well.

Inductive Step. Assume, for the purposes of conditional proof, the inductive hypothesis:

Inductive Hypothesis. For an arbitrary number k,

1 + 2 + 3 + · · ·+ k =
k · (k + 1)

2
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Then, if we add k + 1 to both the left and right hand sides of the equation above, we get

1 + 2 + 3 + · · ·+ k + (k + 1) =
k · (k + 1)

2
+ (k + 1)

=
k · (k + 1)

2
+

2(k + 1)
2

=
k · (k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

=
(k + 1)[(k + 1) + 1]

2

Thus, the claim holds of k + 1

So, from the assumption of the inductive hypothesis that the claim holds of an arbitrary
k, we can show that the claim holds of k + 1 as well. Thus, for any k, if the claim holds
of k, then the claim holds of k + 1 as well.

In this course, we will be interested in using mathematical induction to prove things
about SL and PL. So let us look at an example involving those languages.

Suppose that we wish to establish the following claim:

Claim 2. Every wff of SL which has no operators other than ‘∼’ is an SL-contingency.

To begin with, we must find some way of enumerating the wffs of SL which have no
operators other than ∼. While we could enumerate all of the wffs of SL individually, it
will be simpler if we instead look at sets of wffs of SL. In the first set are all the statement
letters of SL. In the second set are all of the negated statement letters of SL. In the third
are all of the negated negated statement letters of SL. And so on. That is, the list of sets
of wffs on which we will do our induction is the following:

set 1) {A, B, C, · · · }
set 2) {∼A, ∼B, ∼C, · · · }
set 3) {∼ ∼A, ∼ ∼B, ∼ ∼C, · · · }
set 4) {∼∼ ∼A, ∼∼ ∼B, ∼∼ ∼C, · · · }
...

...
...

...
. . .

And the inductive property we will be interested in is the property of containing only SL-
contingencies. That is, the first item on our list (the set containing all of the statement
letters of SL has the property iff it contains only SL-contingencies. This is the basis step.
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Basis Step. Every wff of SL in the first set is a statement letter of SL. A truth-value assign-
ment is an assignment of truth-value to the statement letters of SL. For every statement
letter, there is some truth-value assignment on which it is true and some truth-value as-
signment on which it is false. Therefore, every statement letter of SL is an SL-contingency.
So the first set of wffs of SL contains only SL-contingencies.

Next, we must prove the inductive step. For this, we will begin by assuming, for an
arbitrary k, that all of the wffs in the kth set are SL-contingencies, and then showing
that, if this assumption is true, then we may show that all of the wffs in the k + 1st set
are SL-contingencies also.

Inductive Step. Assume, for the purposes of conditional proof, the inductive hypothesis.

Inductive Hypothesis. All of the wffs in the kth set are SL-contingencies.

Every wff in the k + 1st set is the result of negating a wff in the kth set. Thus, every wff ⌜P⌝
in the k + 1st set is of the form

∼Q

for some ⌜Q⌝ in the kth set. By the inductive hypothesis, every ⌜Q⌝ in the kth set is an
SL-contingency. So there are some truth-value assignments on which ⌜Q⌝ is true and
some truth-value assignments on which ⌜Q⌝ is false. On every truth-value assignment
on which ⌜Q⌝ is true, ⌜∼Q⌝ is false (by the definition of ‘∼’). And on every truth-value
assignment on which ⌜Q⌝ is false, ⌜∼Q⌝ is true (by the definition of ‘∼’). Thus, for every
⌜P⌝ in the k + 1st set, there are some truth-value assignments on which ⌜P⌝ is true and
some truth-value assignments on which ⌜P⌝ is false. Thus, every ⌜P⌝ in the k + 1st set is
an SL-contingency.

From the assumption that every wff in the kth set is an SL-contingency, we were able to
show that every wff in the k + 1st set is an SL-contingency too. k was arbitrary, so we may
conclude that for any k, if every wff in the kth set is an SL-contingency, then every wff in
the k + 1st set is an SL-contingency also.

7.8 Varieties of Mathematical Induction

We’ve seen the basics of the proof technique of mathematical induction. However, there
are several nuances we should spend some time looking at. There are a few different va-
rieties of mathematical induction, which are distinguished by the form of the inductive
hypothesis. The variety ofmathematical inductionwe have just been looking at is known
as weak induction.

weak induction In weak induction, the inductive hypothesis is that, for some arbi-
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trary k, the kth item on our list has the inductive property. From this, we show
that the k + 1st item on our list has the inductive property.

For some applications of mathematical induction, it will be simpler to make another
kind of inductive hypothesis. Following Teller, we may call this the strong form of
weak induction:

strong form of weak induction In the strong form of weak induction, the induc-
tive hypothesis is that, for some arbitrary k, every item on our list up to the kth
has the inductive property. From this, we show that the k + 1st item on our list
has the inductive property.

That is, when we are using the strong form of weak induction, we assume that, for all
numbers i ≤ k, the ith item on our list has the inductive property. And we then go on
to show that the k + 1st item on our list has the inductive property as well.

If we have completed the basis step of an induction, by showing that:

The first item on our list has the inductive property.

P(1)

And we have completed the inductive step by showing that the following universally
quantified conditional is true:

For any k, if all items on our list up to and including k have the inductive property,
then the k + 1st item on our list has the inductive property, too.

(∀i)(i ≤ k ⊃P(i)) ⊃P(k + 1)

Then we may reason as follows: we know that the first item on our list has the inductive
property. So, every item up to and including the first item has the inductive property.
So, by the inductive step, the second item on our list must have the inductive property,
too. So the first and the second items on our list have the inductive property. So every
item up to and including the second item on our list have the inductive property. By the
inductive step, the third item on our list must have the inductive property too. So every
item up to and including the third item on our list has the inductive property. So, by
the inductive step, the fourth item on our list must have the inductive property, too. So
every item up to and including the fourth item on our list has the inductive property.
By the inductive step...
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If we continue reasoning in this way, then we will eventually cover every item on the
list. The reasoning at play here is precisely similar to the reasoning at play in the form of
mathematical induction we considered before. However, this alternate formulation will
prove more useful with certain problems.

7.9 Choosing the Right Inductive Property

Consider the following claim:

Claim3. Everywff of SLwhich has ‘&’ as its only logical operator is not an SL-contradiction
(that is: it is true on some truth-value assignment).

If we wish to prove this claim with mathematical induction, then we will first need to
construct some list of the wffs of SL with ‘&’ as their only logical operators. This is the
list that we will attempt to do mathematical induction on. It looks like the following list
will do nicely:

set 0) The set containing all of the statement letters of SL.

set 1) The set of all wffs of SL with ‘&’ as their only operator which contain 1 occurrence
of ‘&’.

set 2) The set of all wffs of SL with ‘&’ as their only operatorwhich contain 2 occurrences
of ‘&’.

set 3) The set of all wffs of SL with ‘&’ as their only operatorwhich contain 3 occurrences
of ‘&’.

...

set n) The set of all wffs of SL with ‘&’ as their only operatorwhich contain n occurrences
of ‘&’.

...

Which inductive property should we choose? Well, we wish to show that every item on
this list contains only wffs which are not SL-contradictions, so it’s natural to choose the
following inductive property:

inductive property A set on our list has the inductive property iff that set contains
no SL-contradictions.
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However, it turns out that completing the inductive step with this inductive property
will be rather difficult. Let’s see why.

When we make the inductive hypothesis, we should grant ourselves the assumption
that every set on our list up to and including set k contains no SL-contradictions, and
attempt to show that from this assumption we can show that set k + 1 contains no SL-
contradictions.

Inductive Hypothesis. For some arbitrary k, all sets up to and including set k contain no
SL-contradictions.

Consider now how the inductive step might go. We might try to say the following (note:
this is not a valid proof of the inductive step).

This is not a valid proof of the inductive step!!!

Inductive Step. Every wff in the set k is of the form ⌜(P & Q)⌝, with wffs ⌜P⌝ and
⌜Q⌝ belonging to sets 1–k. By the inductive hypothesis, neither ⌜P⌝ nor ⌜Q⌝ are SL-
contradictions. Thus, there is some truth-value assignment on which ⌜P⌝ is true and some
truth-value assignment on which ⌜Q⌝ is true. Therefore, there is some truth-value assig-
ment on which ⌜(P & Q)⌝ is true. Therefore, ⌜(P & Q)⌝ is not an SL-contradiction.

This is not a valid proof of the inductive step!!!

Why is this not a valid proof? Because, simply because ⌜P⌝ is true on some truth-value
assignment and ⌜Q⌝ is true on some truth-value assignment, this does not mean that
⌜(P & Q)⌝ is true on some truth-value assignment.

Let ⌜P⌝ = ‘A’, and let ⌜Q⌝ = ‘∼A’. Then, while ⌜P⌝ is true on some truth-value assign-
ment and ⌜Q⌝ is true on some truth-value assignment, ⌜(P & Q)⌝ is not true on any
truth-value assignment. ‘(A & ∼A)’ is an SL-contradiction.

So it turns out that proving the inductive step is hard if we try to prove with with the
following inductive property containing no SL-contradictions.

We may make our work easier by choosing to prove something stronger than the thing
that we ultimately wish to show.1 Rather than showing that none of the sets on our list
contain any SL-contradictions, we could instead attempt to show that all of the wffs in
each set on our list has the following property: it is true on the truth-value assignment
which makes each statement letter true. That is, we may choose the following inductive
property:

1 One claim is stronger than another iff the first entails the second, but the second doesn’t entail the first.
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inductive property A set on our list has the inductive property iff that set contains
only wffs which are true on the truth-value assignment which makes every state-
ment letter of SL true.

It is rather easy to show that the first set on our list has this property:

Basis Step. Set 0 contains only statement letters of SL. Trivially, all of these statement
letters are true on the truth-value assignment which makes all of the statement letters of
SL true.

And it is similarly easy to complete the inductive step.

Inductive Step. Assume, for the purposes of conditional proof, that the inductive hypoth-
esis is true.

Inductive Hypothesis. For some arbitrary k, all sets up to and including set k contain
only wffs which are true on the truth-value assignment which makes every statement letter
of SL true.

Every wff in set k + 1 is of the form

(P & Q)

for some ⌜P⌝ and ⌜Q⌝ which appear in sets 0–k. By the inductive hypothesis, then, both
⌜P⌝ and ⌜Q⌝ are true on the truth-value assignment which makes all statement letters of
SL true. Therefore, by the definition of ‘&’ (a conjunction is true iff both of its conjuncts
are true), ⌜(P & Q)⌝ is also true on the truth-value assignment which makes all statement
letters true. Since ⌜P⌝ and ⌜Q⌝ were arbitrary, every wff in set k + 1 is true on the truth-
value assignment which makes every statement letter of SL true.

By conditional proof, for any k, if all sets up to and including set k contain only wffs which
are true on the truth-value assignment which makes all of the statement letters of SL true,
then set k+ 1 contains only wffswhich are true on the truth-value assignment whichmakes
all of the statement letters of SL true.

The lesson: we should be shrewd in our choice of inductive property. Sometimes, it
makes sense to choose an inductive property which is more informative than the prop-
erty which we are trying to show that every item on our list possesses.

7.10 More Examples of Mathematical Induction

Suppose that we wish to establish the following claim:
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Claim 4. Any wff of SL which contains only the operator ‘∨’ is not an SL-contradiction.

To begin to prove this claim using mathematical induction, we must find some way of
enumerating the wffs of SL which contain only ‘∨’. Here is one natural way of doing it:

set 0) The set of all statement letters of SL.

set 1) The set of all wffs of SL containing only the operator ‘∨’ which contain one oc-
currence of ‘∨’.

set 2) The set of all wffs of SL containing only the operator ‘∨’ which contain two oc-
currences of ‘∨’

set 3) The set of all wffs of SL containing only the operator ‘∨’ which contain three oc-
currences of ‘∨’

...

set n) The set of all wffs of SL containing only the operator ‘∨’ which contain n occur-
rences of ‘∨’.

Every wff of SL which contains only the operator ‘∨’ will appear within one of the sets
on this list.

Next, we must decide upon an inductive property which we wish to show every item on
our list has. The natural choice of inductive property is the property of containing no
SL-contradictions. Let’s ride with this inductive property and see if things work out.

We may complete the basis step as follows:

Basis Step. Every statement letter of SL has some truth-value assignment on which it is
true. Thus, no statement letter of SL is an SL-contradiction. So no wff in set 0 is an SL-
contradiction. So set 0 contains no SL-contradictions.

Now, suppose that we attempted to complete the inductive step bymaking the following
inductive hypothesis:

Inductive Hypothesis. For an arbitrary k, set k contains no SL-contradictions.

The problem is that, if we use the list above, we could not use this inductive hypothesis
to show that the set k + 1 contains no SL contradictions. For example, suppose that we
are thinking about set 2—that is, suppose that k = 2. Now, the inductive hypothesis
tells us that all wffs from set 2 are not SL-contradictions. And we wish to show that set
3 does not contain any SL-contradictions. Set 3 contains the following wff of SL:

((A∨ B) ∨ (C ∨ D))
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This is a disjunction whose two disjuncts are ‘(A∨ B)’ and ‘(C ∨D)’. But neither of these
wffs are from set 2. Both of these wffs are from set 1. So our inductive hypothesis doesn’t
tell us that they are not SL-contradictions.

We may get around this problem by using the strong form of weak induction. That is:
we may complete the inductive step by making the following inductive hypothesis:

Inductive Step. Assume, for the purposes of conditional proof, the following inductive
hypothesis:

Inductive Hypothesis. For some arbitrary k, all sets up to and including set k contain no
SL-contradictions.

Then, every wff in set k + 1 is of the form

(P∨Q)

For some wffs ⌜P⌝, ⌜Q⌝ from sets 1–k. Since ⌜P⌝ is from sets 1–k, by the inductive
hypothesis, there is some truth-value assignment which makes ⌜P⌝ true. But any truth-
value assignment which makes ⌜P⌝ true makes ⌜(P ∨Q)⌝ true. So, there is some truth-
value assignment which makes ⌜P ∨Q⌝ true. So ⌜(P ∨Q)⌝ is not an SL-contradiction.
Since ⌜P⌝ and ⌜Q⌝ were arbitrary, the same goes for every other wff in set k + 1. So set
k + 1 contains no SL-contradictions.

7.10.1 Number of Parentheses

Let’s use mathematical induction to prove the following claim:

Claim 5. For every wff of SL, ⌜P⌝, if ⌜P⌝ has n binary operators—where ‘∨’, ‘ & ’, ‘⊃’,
and ‘≡’ are binary operators—then ⌜P⌝ has 2n parentheses.

First, let’s think through what this says. If we have a wff with 0 binary operators, like,
e.g.,

D

∼ ∼A

∼∼ ∼F

this wffs will have 2 · 0 = 0 parentheses. And if we have a wff with 1 binary operator,
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like, e.g.,

(E ∨ P)

∼ (K ⊃ L)

(∼ ∼H ≡ ∼Z)

this wff will have 2 · 1 = 2 parentheses. And if we have a wff with 2 binary operators,
like, e.g.,

((E ∨ P) ⊃ ∼L)

(∼ (K ⊃ L) ∨ H)

((∼ ∼H ≡ ∼Z) & Y)

this wff will have 2 · 2 = 4 parentheses.

The claim seems to hold true when we look at these example wffs. We wish to show that
it holds in general, of any wff of SL. Intuitively, the reason that it seems to hold is that,
every time we introduce a new binary operator, we write down two extra parentheses; so
the total number of parentheses should just be two times the number of binary operators.
We can show this more rigorously using mathematical induction. Here’s the way we’ll
do it: we’ll start with an infinitely long list such that every wff of SL shows up at some
point on the list. Since we want to show a property that has to do with the number of
binary operators in the wff, the following seems like a good choice:

set 0) The set containing all wffs of SL with 0 binary operators.

set 1) The set containing all wffs of SL with 1 binary operator.

set 2) The set containing all wffs of SL with 2 binary operators.

set 3) The set containing all wffs of SL with 3 binary operators.

...

set n) The est containing all wffs of SL with n binary operators.

The inductive property we wish to show that every item on this list has is the following:

inductive property A set on our list has the inductive property iff every wff in that
set it has twice as many parentheses as it has binary operators.

Start with the basis step:
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Basis Step. Every wff with 0 parentheses is either a statement letter or some number of
tildes in front of a statement letter. Statement letters don’t have parentheses, and negations
of negations of...statement letters don’t have parentheses either. So every wff in set 0 will
have 2 · 0 = 0 parentheses. So every wff in set 0 has twice as many parentheses as it has
binary operators.

Then, the inductive step:

Inductive Step. Assume, for the purposes of conditional proof, the inductive hypothesis.

Inductive Hypothesis. For some arbitrary k, every set up to and including set k is such
that the members of that set have twice as many parentheses as they have binary operators.

Then, every wff in set k + 1, ⌜P⌝, will have one of the following forms:

1. ⌜(Q∨R)⌝

2. ⌜(Q & R)⌝

3. ⌜(Q ⊃ R)⌝

4. ⌜(Q ≡ R)⌝

5. ⌜ . . .∼(Q∨R)⌝

6. ⌜ . . .∼(Q & R)⌝

7. ⌜ . . .∼(Q ⊃ R)⌝

8. ⌜ . . .∼(Q ≡ R)⌝

for some ⌜Q⌝, ⌜R⌝ from sets 0–k.

Let ⌜#op(Q)⌝ denote the number of binary operators in ⌜Q⌝, and let ⌜#op(R)⌝ denote the
number of binary operators in ⌜R⌝. And let ⌜#par(Q)⌝ denote the number of parentheses
in ⌜Q⌝ and similarly let ⌜#par(R)⌝ denote the number of parentheses in ⌜R⌝.

If ⌜P⌝ is of the form ⌜(Q∨R)⌝, ⌜(Q & R)⌝, ⌜(Q ⊃ R)⌝, ⌜(Q ≡ R)⌝, ⌜ . . .∼(Q∨R)⌝,
⌜ . . .∼(Q & R)⌝, ⌜ . . .∼(Q ⊃ R)⌝, or ⌜ . . .∼(Q ≡ R)⌝, then, since ⌜P⌝ has k + 1 binary
operators, ⌜Q⌝ and ⌜R⌝ must have a total of k binary operators between the two of them.
That is:

#op(Q) + #op(R) = k (⋆)

Both ⌜Q⌝ and ⌜R⌝ are from sets 0–k. So, by the inductive hypothesis,

#par(Q) = 2#op(Q) #par(R) = 2#op(R)

1
2

#par(Q) = #op(Q)
1
2

#par(R) = #op(R)
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Putting this together with (⋆), we get:

1
2

#par(Q) +
1
2

#par(R) = k

1
2
(#par(Q) + #par(R)) = k

#par(Q) + #par(R) = 2k

Then, since ⌜P⌝ is of the form the form ⌜(Q∨R)⌝, ⌜(Q & R)⌝, ⌜(Q ⊃ R)⌝, ⌜(Q ≡ R)⌝,
⌜ . . .∼(Q∨R)⌝, ⌜ . . .∼(Q & R)⌝, ⌜ . . .∼(Q ⊃ R)⌝, or ⌜ . . .∼(Q ≡ R)⌝, the number of
parentheses in ⌜P⌝ is the number of parenthases in ⌜Q⌝ plus the number of parentheses
in ⌜R⌝, plus 2.

#par(P) = #par(Q) + #par(R) + 2

= 2k + 2

= 2(k + 1)

So, ⌜P⌝ has twice as many parentheses as binary operators.

From the inductive hypothesis that, for an arbitrary k, every wff with k or fewer binary op-
erators has 2k parentheses, we were able to show that every wff with k+ 1 binary operators
has 2(k + 1) binary operators.

Since k was arbitrary, we may conclude that, for any k, if every wff with k or fewer binary
operators has 2k parentheses, then every wff with k + 1 binary operators has 2(k + 1)
binary operators.

7.10.2 Substitution of SL-equivalents

Claim 6. For any wff of SL ⌜P⌝, if ⌜Q⌝ is a subformula of ⌜P⌝ and ⌜Q∗ ⌝ is SL-equivalent
to ⌜Q⌝, then the result of replacing ⌜Q⌝ with ⌜Q∗ ⌝ in ⌜P⌝ is SL-equivalent to ⌜P⌝.

For example, ‘(A∨ B)’ is a subformula of ‘((A∨ B) ⊃ C)’, and ‘(B∨ A)’ is SL-equivalent
to ‘(A ∨ B)’. So, the claim tells us that ‘((B∨ A) ⊃ C)’ is SL-equivalent to ‘((A ∨ B) ⊃
C)’.

To complete the induction, we must first specify which list of things we are doing the
induction on. The following list is, in general, a good one to use if you wish to show that
all the wffs of SL have a certain property:

set 0) The set of all statement letters of SL.

set 1) The set of all wffs of SL with one logical operator.
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set 2) The set of all wffs of SL with two logical operators.

set 3) The set of all wffs of SL with three logical operators.

...

set n) The set of all wffs of SL with n logical operators.

...

Then, a wff like
(∼A ⊃ ∼B)

will appear in set 3, since it has three logical operators: it has one ‘∼’, one ‘⊃’, and another
‘∼’. And a wff like

(∼(A & B) ⊃ ∼(D ≡ F))

will appear in set 5, since it has 5 logical operators: two ‘∼’s, one ‘&’, one ‘⊃’, and one ‘≡’.

We next need to choose an inductive property. The thing we wish to show about the
wffs of SL is that, for any wff ⌜P⌝, for every ⌜P∗ ⌝ which is the result of replacing some
subformula of ⌜P⌝ with an SL equivalent subformula, ⌜P∗ ⌝ is SL equivalent to ⌜P⌝.
This is a mouthful. To make it a bit simpler to say, let’s introduce a phrase—“equivalent
under equivalent substitutions”—to stand for this property.

A wff of SL ⌜P⌝ is equivalent under equivalent substitutions iff, for
every wff ⌜P∗ ⌝ which is the result of replacing some subformula of ⌜P⌝
with an SL equivalent subformula, ⌜P∗ ⌝ is SL-equivalent to ⌜P⌝.

Then, our inductive property (the property we are trying to show that every item on our
list has), is the property of containing only wffs which are equivalent under equivalent
substitutions.

For any i, set i has the inductive property iff set i contains only wffs which
are equivalent under equivalent substitutions.

First, we must complete the basis step

Basis Step. Every wff in set 0 is a statement letter. Since every wff is a subformula of itself,
every statement letter has one and only one subformula: itself. If we replace a statement
letter with a wff which is SL-equivalent to it, then what we will get is trivially a wff which
is SL-equivalent to the statement letter. So set 0 contains only wffs which are equivalent
under equivalent substitutions.
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Next, for the inductive step, we assume, in our inductive hypothesis, that every set up to
and including set k contains only wffs which are equivalent under equivalent substitu-
tions, and then use this assumption to conclude that set k + 1 contains only wffs which
are equivalent under equivalent substitutions.

Inductive Step. Assume, for the purposes of conditional proof, the inductive hypothesis

Inductive Hypothesis. For some arbitrary k, every set up to and including set k contains
only wffs which are equivalent under equivalent substitutions.

Then, every wff ⌜P⌝ in set k + 1 will have one of the following forms

1. ⌜∼Q⌝

2. ⌜(Q∨R)⌝

3. ⌜(Q & R)⌝

4. ⌜(Q ⊃ R)⌝

5. ⌜(Q ≡ R)⌝

for some wffs ⌜Q⌝, ⌜R⌝ from sets 0–k. By the inductive hypothesis, we know that both
⌜Q⌝ and ⌜R⌝ are equivalent under equivalent substitutions.

Trivially, if we substitute, for ⌜P⌝, a wff which is SL-equivalent to ⌜P⌝, then what we get
will be SL-equivalent to ⌜P⌝.

Every other subformula of ⌜P⌝, however, will be a subformula of either ⌜Q⌝ or ⌜R⌝. We
know, by the inductive hypothesis, that ⌜Q⌝ and ⌜R⌝ are equivalent under SL-substitutions.
Thus, for any ⌜Q∗ ⌝ which is the result of substituting some subformula of ⌜Q⌝ with an
SL-equivalent subformula, ⌜Q∗ ⌝ is SL-equivalent to ⌜Q⌝. And, for any ⌜R∗ ⌝ which
is the result of substituting some subformula of ⌜R⌝ with an SL-equivalent subformula,
⌜R∗ ⌝ is SL-equivalent to ⌜R⌝. Thus, for any such ⌜Q∗ ⌝ or ⌜R∗ ⌝, ⌜Q∗ ⌝ will be true on
all and only the truth-value assignments on which ⌜Q⌝ is true, and ⌜R∗ ⌝ will be true on
all and only the truth-value assignments on which ⌜R⌝ is true.

Therefore, ⌜P∗ ⌝ will be SL-equivalent to ⌜P⌝. To make this even clearer, we can walk
through the 5 cases above and see that, if you substitute a subformula of either ⌜Q⌝ or
⌜R⌝ in ⌜P⌝ for an SL-equivalent subformula, then the result will be SL-equivalent to ⌜P⌝.
Since we know that ⌜Q⌝ and ⌜Q∗ ⌝ are SL-equivalent by the inductive hypothesis, they
must be true on all the same truth-value assignments. And similarly for ⌜R⌝ and ⌜R∗ ⌝.
Thus,

Q Q∗ ∼Q ∼Q∗

T T F F

F F T T
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Q Q∗ R R∗ Q∨R Q∗ ∨R Q∨R∗

T T T T T T T

T T F F T T T

F F T T T T T

F F F F F F F

Q Q∗ R R∗ Q & R Q∗ & R Q & R∗

T T T T T T T

T T F F F F F

F F T T F F F

F F F F F F F

Q Q∗ R R∗ Q ⊃ R Q∗ ⊃ R Q ⊃ R∗

T T T T T T T

T T F F F F F

F F T T T T T

F F F F T T T

Q Q∗ R R∗ Q ≡ R Q∗ ≡ R Q ≡ R∗

T T T T T T T

T T F F F F F

F F T T F F F

F F F F T T T

So, whether ⌜P⌝ is of the form ⌜∼Q⌝, ⌜Q ∨R⌝, ⌜Q & R⌝, ⌜Q ⊃ R⌝, or ⌜Q ≡ R⌝, ⌜P⌝
will be equivalent under equivalent substitutions.

But, since ⌜P⌝ was arbitrary, we may conclude that, for any wff ⌜P⌝ in set k + 1, ⌜P⌝
is equivalent under equivalent substitutions. Thus, set k + 1 contains only wffs which are
equivalent under equivalent substitutions.

Thus, from the inductive hypothesis that all sets up to and including some arbitrary set k
contain only wffs which are equivalent under equivalent substitutions, we may conclude
that set k + 1 contains only wffs which are equivalent under equivalent substitutions.

Therefore, for any k, if all sets up to and including set k contain only wffs which are equiva-
lent under equivalent substitutions, then set k + 1 contains only wffs which are equivalent
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under equivalent substitutions.

7.10.3 Duals

Claim 7. For any wff of SL ⌜P⌝ which contains only the logical operators ‘∨’, ‘&’, and ‘∼’,
the wff that we get when place a ‘∼’ in front of every statement letter appearing in ⌜P⌝,
replace every occurrence of ‘∨’ with ‘&’, and replace every occurrence of ‘&’ with ‘∨’—call
this the dual of ⌜P⌝—is SL-equivalent to ⌜∼P⌝.

For example, if ⌜P⌝ = ‘(A∨ (B & ∼C))’, then the dual of ⌜P⌝ is ‘(∼A & (∼B∨ ∼ ∼C))’.

To prove this claim, we must first decide upon the list on which we are going to do the
induction. The following is a natural choice:

set 0) The set of all statement letters of SL.

set 1) The set of all wffs of SL containing only ‘∨’, ‘&’, and ‘∼’ which have one logical
operator.

set 2) The set of all wffs of SL containing only ‘∨’, ‘&’, and ‘∼’ which have two logical
operators.

set 3) The set of all wffs of SL containing only ‘∨’, ‘&’, and ‘∼’ which have three logical
operators.

...

set n) The set of all wffs of SL containing only ‘∨’, ‘&’, and ‘∼’ which have n logical op-
erators.

We next need to choose an inductive property. Let’s say, for any wff ⌜P⌝, that ⌜P⌝ is
dual-contradictory iff the dual of ⌜P⌝ is SL-equivalent to ⌜∼P⌝.

For any wff of SL with only the logical operators ‘∨’, ‘ & ’, and ‘∼’, ⌜P⌝, ⌜P⌝
is dual-contradictory iff the dual of ⌜P⌝, dual( ⌜P⌝), is SL-equivalent
to ⌜∼P⌝.

Then, the inductive property—which wewish to show that every item on our list has—is
the property of containing only dual-contradictory wffs.

Thus, for the basis step, we must show that every wff in set 0—that is, every statement
letter—is dual-contradictory.
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Basis Step. Set 0 contains all and only the statement letters of SL. For every statement
letter ⌜A⌝, the dual of that statement letter is ⌜∼A⌝. ⌜∼A⌝ is trivially SL-equivalent to
⌜∼A⌝. Thus, set 0 contains only dual-contradictory wffs.

Next, we need to establish the inductive step. To do so, we will assume the inductive
hypothesis that, for some arbitrary k, all sets up to and including set k contain only
dual-contradictory wffs. From the inductive hypothesis, we will show that set k + 1
contains only dual-contradictory wffs.

Inductive Step. Assume, for the purposes of conditional proof, the inductive hypothesis

Inductive Hypothesis. For some arbitrary k, all sets up to and including set k contain
only dual-contradictory wffs.

Then, every wff ⌜P⌝ in set k + 1 will have one of the following forms

1. ⌜∼Q⌝

2. ⌜(Q∨R)⌝

3. ⌜(Q & R)⌝

For some ⌜Q⌝, ⌜R⌝ from sets 0–k. By the definition of ‘dual’,

1. dual(∼Q) = ∼dual(Q)

2. dual((Q∨R)) = (dual(Q) & dual(R))

3. dual((Q & R)) = (dual(Q) ∨ dual(R))

By the inductive hypothesis, we know that dual(Q) is SL-equivalent to ∼Q and dual(R)

is SL-equivalent to ∼R. That is:

Q R dual(Q) dual(R) ∼Q ∼R

T T F F F F

T F F T F T

F T T F T F

F F T T T T

We may simply proceed by cases. If ⌜P⌝ = ⌜∼Q⌝, then dual(P) = ∼dual(Q), and

Q dual(Q) ∼ ∼Q ∼dual(Q)

T F T T

F T F F
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Thus, dual(P) is SL-equivalent to ∼P.

If ⌜P⌝ = ⌜(Q∨R)⌝, then dual(P) = (dual(Q) & dual(R)), and

Q R dual(Q) dual(R) ∼(Q∨R) dual(Q) & dual(R)

T T F F F F

T F F T F F

F T T F F F

F F T T T T

Thus, dual(P) is SL-equivalent to ∼P.

If ⌜P⌝ = ⌜(Q & R)⌝, then dual(P) = (dual(Q) ∨ dual(R)), and

Q R dual(Q) dual(R) ∼(Q & R) dual(Q) ∨ dual(R)

T T F F F F

T F F T T T

F T T F T T

F F T T T T

Thus, dual(P) is SL-equivalent to ∼P.

Therefore, dual(P) is SL-equivalent to ∼P no matter whether ⌜P⌝ is of the form ⌜∼Q⌝,
⌜(Q∨R)⌝ or ⌜(Q & R)⌝.

Since ⌜P⌝ was arbitrary, the same holds for every ⌜P⌝ in set k + 1. Therefore, every wff in
set k + 1 is dual-contradictory. So set k + 1 contains only dual-contradictory wffs.

Therefore, from the inductive hypothesis that all sets up to and including set k contain
only dual-contradictory wffs, we were able to show that set k + 1 contains only dual-
contradictory wffs.

Since k was arbitrary, for any k, if all sets up to and including set k contain only dual-
contradictory wffs, then set k + 1 contains only dual contradictory wffs, too.



Chapter 8

Soundness of the Tree Method for
Sentence Logic

Today we wish to show that the tree method for SL is sound. Recall, the tree method is
sound iff we can trust everything that it has to say about validity—that is, iff, whenever
the tree method says that an argument is valid, that argument is valid.

soundness The tree method for SL is sound iff, for any set Γ and wff ⌜P⌝:

if Γ |−S L P then Γ |=S L P

8.1 Preliminaries

Before getting into the proof of soundness, I want to firm up some details of the truth
trees. For themost part, I’ve been ignoring line numbering. However, for our proof that
the treemethod is sound, we will be doingmathematical induction on the lines of a tree,
so it will be important that we’re clear on how the lines get numbered, what it is for a wff
to appear on a line, and what a branch is.

Consider the following tree.

211
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1 ∼A ⊃ B✓

2 ∼(B ⊃ C) ✓

3 ∼((A ⊃ C) ⊃ ∼A) ✓

|
4 B

∼C

|
5 A ⊃ C ✓

∼∼A ✓

|
6 A

7 ∼∼A ✓ B

8 A ∼A C

× ×

9 ∼A C

× ×

This tree has 9 lines. Line 4 has two wffs written on it—one stacked on top of the other.
That is: both ‘B’ and ‘∼C’ appear on line 4. Similarly, line 5 has two wffs written on it;
both ‘A ⊃ C’ and ‘∼∼A’ are on line 5.

Line 7 also has two wffs written on it, but those wffs are on different branches. That is:
‘∼∼A’ and ‘B’ are both written on line 7.

This tree has four overlapping branches. These four branches have the following wffs
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written on them, in the following order.

1st branch 2nd branch 3rd branch 4th branch
line 1 ∼A ⊃ B ∼A ⊃ B ∼A ⊃ B ∼A ⊃ B

line 2 ∼(B ⊃ C) ∼(B ⊃ C) ∼(B ⊃ C) ∼(B ⊃ C)

line 3 ∼((A ⊃ C) ⊃ ∼A) ∼((A ⊃ C) ⊃ ∼A) ∼((A ⊃ C) ⊃ ∼A) ∼((A ⊃ C) ⊃ ∼A)

line 4 B B B B

∼C ∼C ∼C ∼C

line 5 A ⊃ C A ⊃ C A ⊃ C A ⊃ C

∼∼A ∼∼A ∼∼A ∼∼A

line 6 A A A A

line 7 ∼∼A ∼∼A B B

line 8 A A ∼A C

line 9 ∼A C

Thus, ‘∼A ⊃ B’, on line 1, appears on four different, overlapping branches. ‘B’, on line
7, appears on two different, overlapping branches. ‘∼A’, on line 8, appears on only one
branch: the third one.

8.2 The Proof in Broad Outline

To begin with, let’s appeal to a fact we have seen several times in the course thus far: an
argument from the premises in Γ to the conclusion ⌜P⌝ is SL-valid iff the set containing
all of the premises in Γ and the negation of the conclusion ⌜∼P⌝ is SL-inconsistent.

A bit of notation: if we have two sets Γ and ∆, then ⌜Γ ∪ ∆⌝ refers to a set that has as
members any member of either Γ or ∆.

Γ ∪ ∆ contains all things x such that either x is in Γ or x is in ∆

Then, another way of expressing the connection between consistency and validity is as
follows:

Γ |=S L P if and only if Γ ∪ {∼P} is SL-inconsistent

Thus, we could re-write the claim of soundness as follows:

if Γ |−S L P then Γ ∪ {∼P} is SL-inconsistent (soundness)
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Since ⌜P ⊃ Q⌝ is equivalent to ⌜∼Q ⊃ ∼P⌝ (known as the contrapositive of ⌜P ⊃ Q⌝),
we may re-write the claim of soundness by taking the contrapositive:

if Γ ∪ {∼P} is SL-consistent then Γ ̸|−S L P (soundness)

That is: if there is some truth-value assignment which makes all of the wffs in Γ ∪ {∼P}
true, then any completed tree which begins with the wffs in Γ∪ {∼P} at its root will have
an open branch.

We will establish this claim by establishing something slightly more informative: for any
finite set of wffs ∆, if there is some truth-value assignment which makes all of the wffs
in ∆ true, then any completed tree, ∆, which begins with the wffs in ∆ at its root will
have some branch such that there is some truth-value assignment makes all of the wffs
appearing on that branch true.

To have a shorthand way of referring to this property, let’s say that a branch is consis-
tent iff there is some truth-value assignment which makes all of the wffs appearing on
that branch true.

branch consistency A branch of a tree is consistent iff there is some truth-value
assignment which makes all of the wffs appearing on that branch true.

Then, we will establish soundness by establishing the following claim:

Claim 8. For any finite set of wffs of SL, ∆, if there is some truth-value assignment which
makes every member of ∆ true, then any tree T∆ which has the members of ∆ at its root
will have a consistent branch.

Note that, in this claim, we are only talking about finite sets. We will see how to deal
with infinite sets of wffs of SL later on.

We will prove this claim using the method of conditional proof and mathematical in-
duction. We will begin by assuming, of some arbitrary finite set of wffs ∆, that there is
some truth-value assignment which makes all of the wffs in ∆ true. From there, we will
show that any tree ∆ which has all the wffs in ∆ at its root will have a consistent branch.
We will show this by utilizing mathematical induction. Here is how the induction will
proceed: we will take an arbitrary completed tree, ∆, with the wffs in ∆ at its root, and
we will use induction to show that, at every line of the tree, there is some branch with
the following property: all the wffs which appear on that branch on or before that line
are made true by some truth-value assignment. That’s a mouthful. Let’s see if we can
make it a bit easier to say. To begin with, let’s say that, if there is a truth-value assign-
ment whichmakes all of the wffs appearing on a branch at or before line n true, then that
branch is line-n consistent.
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line-n branch consistency A branch of a tree is line-n consistent iff there is
some truth-value assignmentwhichmakes all of thewffs appearing on that branch
at or before line n true.

And let’s say that, if a line, n, has a branch which is line-n consistent, then that line is
consistent.

line consistency A line, n, of a tree is consistent iff there is some branch at line n
which is line-n consistent.

Then, what we will show with mathematical induction is that every line of the tree ∆ is
consistent. This tells us that, at every line, n, of the tree, there is some branch which is
line-n consistent.

If, at every line, n, there is some branch which is line-n consistent, then there is some
branch which is consistent (if the branch were not consistent, then there would be some
line at which it became inconsistent; so, if we know that the branch is consistent at every
line, then we know that the branch is consistent).1

A short word on this terminology: an open branch may end on line 10, while another
branch continues on to line 20 and eventually closes. We don’t want to say that, in that
case, there is no open branch at line 20, or that line 20 is not consistent. Rather, we will
simply stipulate that any open branch extends to the end of the tree. Then, even if the
last wff of the only open branch on a tree appears on line 10, if the tree extends to line
20, then there is an open branch at line 20; it’s just that no new wffs have been added to
it. And line 20 is still consistent.

Alright. That’s the end of the broad outline of the proof. Now let’s get into the nitty-
gritty.

8.3 Proof that the Tree Method for SL is Sound

Proof. Assume, for the purposes of conditional proof, that there is some truth-value
assignment which makes every wff in some arbitrary finite set ∆ true.

Now, take an arbitrary tree, ∆, which has all of the wffs in ∆ at its root. We will do
mathematical induction on the lines of this tree. That is, our list is the following:

1 Why not just say “there is some branch which is consistent at the final line of the tree”? Well, we haven’t
proven that every tree has a final line—and, indeed, if we want to carry over this proof technique to establish
soundness for PL trees, it will be false that every tree has a final line. Nevertheless, it will still be true that, if,
at every line n, there is some branch which is line-n consistent, then there is some branch which is consistent.
(If this is confusing, don’t worry about it for now; we’ll prove it later on in the course).
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0) The lines at the root of ∆ on which the members of ∆ appear.

1) The first line of ∆ after the members of ∆.

2) The second line of ∆ after the members of ∆.

3) The third line of ∆ after the members of ∆.

...

n The nth line of ∆ after the members of ∆.

Our inductive property will be the following:

inductive property A line of a tree has the inductive property iff that line is consis-
tent. (That is, iff, at that line there is some branch such that all the wffs on that
branch appearing at or before the line are made true on some truth-value assign-
ment.)

We will now show that every line of the tree ∆ is consistent. That is: for every line of the
tree, there is some branch at that line such that every wff which appears on that branch
at or before that line is made true on some one truth-value assignment.

First, we complete the basis step by showing that the lines of ∆ on which the wffs from
∆ appear are consistent.

Basis Step. By assumption, the wffs in ∆ are consistent. Every line at the root of ∆ is on
a branch such that the only wffs appearing at or before that line of the tree are lines on
which the wffs from ∆ appear. Therefore, for every line at the root of the tree, there will
be some truth-value assignment which makes all the wffs appearing at or before that
line true.

Next, wewill complete the inductive step by showing that, for any k, if line k is consistent,
then line k + 1 will be consistent as well.

Inductive Step. Assume, for the purposes of conditional proof, the inductive hypoth-
esis.

Inductive Hypothesis. For some arbitrary k, line k is consistent.

From the inductive hypothesis, there is at least one branch at line k such that everywff on
that branch appearing at or before line k is made true by some truth-value assignment.
Take one such branch—call it ‘b’—and take some truth-value assignment which makes
all the wffs at or before line k on b true. Call it ‘A ’. If the last wff on b appears on or
before line k, then b is consistent at line k + 1, and we are done. If, on the other hand,
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some new wffs appear on b at line k + 1, then b must be extended in accordance with
one of the tree rules. We will show that, no matter which rule is used, there will be some
branch at line k + 1 such that the truth-value assignment A makes every wff appearing
at or before line k + 1 on that branch true. That is: no matter which rule is used, line
k + 1 is consistent.

We will proceed by considering the possible cases.

Case 1: Suppose that the branch b is extended at line k + 1 by an application of the rule
for disjunction.

(∨)

P∨Q ✓

P Q

Then, since ⌜P∨Q⌝ appears on b at or before line k, by the inductive hypoth-
esis, the truth-value assignment A makes ⌜P ∨Q⌝ true. By the definition of
‘∨’, this could only be so if A either makes ⌜P⌝ true or makes ⌜Q⌝ true.

P Q P∨Q

T T T

T F T

F T T

F F F

(a) Suppose that A makes ⌜P⌝ true. We already know, by the inductive hy-
pothesis, that A makes true every earlier wff on the same branch as ⌜P⌝.
So, every wff appearing on the left-hand-side extension of b at or before
line k + 1 is made true by A . So line k + 1 is consistent.

(b) Suppose, on the other hand, thatA makes ⌜Q⌝ true. We already know, by
the inductive hypothesis, that A makes true every earlier wff on the same
branch as ⌜Q⌝. So, every wff appearing on the right-hand-side extension
of b at or before line k + 1 is made true by A . So line k + 1 is consistent.

So, either way, line k + 1 is consistent.

Case 2: Suppose that the branch b is extended at line k + 1 by an application of the rule
for conjunction.
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(&)

P & Q ✓

P
Q

Then, since ⌜P & Q⌝ appears on b at or before line k, by the inductive hypoth-
esis, the truth-value assignment A makes ⌜P & Q⌝ true. By the definition of
‘ & ’, this could only be so if A both makes ⌜P⌝ true and makes ⌜Q⌝ true.

P Q P & Q

T T T

T F F

F T F

F F F

And both ⌜P⌝ and ⌜Q⌝ appear on b at line k + 1. We already know, by the
inductive hypothesis, that A makes true every earlier wff on b. So, every wff
appearing on b at or before line k + 1 is made true by A . So line k + 1 is
consistent.

Case 3: Suppose that the branch b is extended at line k + 1 by an application of the rule
for the conditional.

(⊃)

P ⊃ Q ✓

∼P Q

Then, since ⌜P ⊃ Q⌝ appears on b at or before line k, by the inductive hypoth-
esis, the truth-value assignment A makes ⌜P ⊃ Q⌝ true. By the definition of
‘⊃’, this could only be so if A either makes ⌜P⌝ false or makes ⌜Q⌝ true.

P Q P ⊃ Q

T T T

T F F

F T T

F F T
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(a) Suppose that A makes ⌜P⌝ false. Then, by the definition of ‘∼’, A makes
⌜∼P⌝ true. We already know, by the inductive hypothesis, that A makes
true every earlierwff on the same branch as ⌜∼P⌝. So, everywff appearing
on the left-hand-side extension of b at or before line k + 1 is made true
by A . So line k + 1 is consistent.

(b) Suppose, on the other hand, thatA makes ⌜Q⌝ true. We already know, by
the inductive hypothesis, that A makes true every earlier wff on the same
branch as ⌜Q⌝. So, every wff appearing on the right-hand-side extension
of b at or before line k + 1 is made true by A . So line k + 1 is consistent.

So, either way, line k + 1 is consistent.

Case 4: Suppose that the branch b is extended at line k + 1 by an application of the rule
for the biconditional.

(≡)

P ≡ Q ✓

P
Q

∼P
∼Q

Then, since ⌜P ≡ Q⌝ appears on b at or before line k, by the inductive hypoth-
esis, the truth-value assignment A makes ⌜P ≡ Q⌝ true. By the definition of
‘≡’, this could only be so if A either makes both ⌜P⌝ and ⌜Q⌝ true or makes
both ⌜P⌝ and ⌜Q⌝ false.

P Q P ≡ Q

T T T

T F F

F T F

F F T

(a) Suppose that A makes both ⌜P⌝ and ⌜Q⌝ true. We already know, by the
inductive hypothesis, that A makes true every earlier wff on the same
branch as ⌜P⌝ and ⌜Q⌝. So, every wff appearing on the left-hand-side
extension of b at or before line k + 1 is made true by A . So line k + 1 is
consistent.

(b) Suppose, on the other hand, that A makes ⌜P⌝ and ⌜Q⌝ false. Then, by
the definition of ‘∼’, A makes ⌜∼P⌝ and ⌜∼Q⌝ true. We already know,
by the inductive hypothesis, that A makes true every earlier wff on the
same branch as ⌜∼P⌝ and ⌜∼Q⌝. So, every wff appearing on the right-
hand-side extension of b at or before line k + 1 is made true by A . So
line k + 1 is consistent.
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So, either way, line k + 1 is consistent.

Case 5: Suppose that the branch b is extended at line k + 1 by an application of the rule
for negated negations.

(∼∼)

∼∼P ✓

P

Then, since ⌜ ∼ ∼P⌝ appears on b at or before line k, by the inductive hypoth-
esis, the truth-value assignment A makes ⌜ ∼ ∼P⌝ true. By the definition of
‘∼’, this could only be so if A makes ⌜P⌝ true.

P ∼P ∼ ∼P

T F T

F T F

⌜P⌝ appears on b at line k + 1. We already know, by the inductive hypothesis,
that A makes true every earlier wff on b. So, every wff appearing on b at or
before line k + 1 is made true by A . So line k + 1 is consistent.

Case 6: Suppose that the branch b is extended at line k + 1 by an application of the rule
for negated disjunctions.

(∼∨)

∼(P∨Q) ✓

∼P
∼Q

Then, since ⌜∼(P ∨Q)⌝ appears on b at or before line k, by the inductive hy-
pothesis, the truth-value assignment A makes ⌜∼(P ∨Q)⌝ true. By the defi-
nition of ‘∼’ and ‘∨’, this could only be so if A makes ⌜∼P⌝ and ⌜∼Q⌝ true.

P Q ∼(P∨Q) ∼P ∼Q

T T F F F

T F F F T

F T F T F

F F T T T
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⌜∼P⌝ and ⌜∼Q⌝ appear on b at line k + 1. We already know, by the inductive
hypothesis, that A makes true every earlier wff on b. So, every wff appearing
on b at or before line k + 1 is made true by A . So line k + 1 is consistent.

Case 7: Suppose that the branch b is extended at line k + 1 by an application of the rule
for negated conjunctions.

(∼&)

∼(P & Q) ✓

∼P ∼Q

Then, since ⌜∼(P & Q)⌝ appears on b at or before line k, by the inductive hy-
pothesis, the truth-value assignment A makes ⌜∼(P & Q)⌝ true. By the def-
inition of ‘∼’ and ‘ & ’, this could only be so if A either makes ⌜∼P⌝ true or
makes ⌜∼Q⌝ true.

P Q ∼(P & Q) ∼P ∼Q

T T F F F

T F T F T

F T T T F

F F T T T

(a) Suppose that A makes ⌜∼P⌝ true. We already know, by the inductive
hypothesis, that A makes true every earlier wff on the same branch as
⌜∼P⌝. So, every wff appearing on the left-hand-side extension of b at or
before line k + 1 is made true by A . So line k + 1 is consistent.

(b) Suppose, on the other hand, that A makes ⌜∼Q⌝ true. We already know,
by the inductive hypothesis, that A makes true every earlier wff on the
same branch as ⌜∼Q⌝. So, every wff appearing on the right-hand-side
extension of b at or before line k + 1 is made true by A . So line k + 1 is
consistent.

So, either way, line k + 1 is consistent.

Case 8: Suppose that the branch b is extended at line k + 1 by an application of the rule
for negated conditionals.
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(∼ ⊃)

∼(P ⊃ Q) ✓

P
∼Q

Then, since ⌜∼(P ⊃ Q)⌝ appears on b at or before line k, by the inductive
hypothesis, the truth-value assignment A makes ⌜∼(P ⊃ Q)⌝ true. By the
definition of ‘∼’ and ‘⊃’, this could only be so if A makes both ⌜P⌝ and ⌜∼Q⌝

true.
P Q ∼(P ⊃ Q) ∼Q

T T F F

T F T T

F T F F

F F F T

⌜P⌝ and ⌜∼Q⌝ appear on b at line k + 1. We already know, by the inductive
hypothesis, that A makes true every earlier wff on b. So, every wff appearing
on b at or before line k + 1 is made true by A . So line k + 1 is consistent.

Case 9: Suppose that the branch b is extended at line k + 1 by an application of the rule
for negated biconditionals.

(∼ ≡)

∼(P ≡ Q) ✓

P
∼Q

∼P
Q

Then, since ⌜∼(P ≡ Q)⌝ appears on b at or before line k, by the inductive
hypothesis, the truth-value assignment A makes ⌜∼(P ≡ Q)⌝ true. By the
definition of ‘∼’ and ‘≡’, this could only be so if A either makes ⌜P⌝ true and
⌜Q⌝ false or makes ⌜P⌝ false and ⌜Q⌝ true.

P Q ∼(P ≡ Q)

T T F

T F T

F T T

F F F
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(a) Suppose that A makes ⌜P⌝ true and ⌜Q⌝ false. By the definition of ‘∼’,
this means that A makes both ⌜P⌝ and ⌜∼Q⌝ true. We already know, by
the inductive hypothesis, that A makes true every earlier wff on the same
branch as ⌜P⌝ and ⌜∼Q⌝. So, every wff appearing on the left-hand-side
extension of b at or before line k + 1 is made true by A . So line k + 1 is
consistent.

(b) Suppose, on the other hand, that A makes ⌜P⌝ false and ⌜Q⌝ true. By
the definition of ‘∼’, this means that A makes both ⌜∼P⌝ and ⌜Q⌝ true.
We already know, by the inductive hypothesis, that A makes true every
earlier wff on the same branch as ⌜∼P⌝ and ⌜Q⌝. So, every wff appearing
on the right-hand-side extension of b at or before line k + 1 is made true
by A . So line k + 1 is consistent.

So, either way, line k + 1 is consistent.

We have now considered all the possible cases and seen that, in each case, line k + 1 is
consistent. So, no matter which is the case, line k + 1 will be consistent.

Thus, from the inductive hypothesis that line k is consistent, we have shown that line
k + 1 is consistent. Since k was arbitrary, we may conclude that, for any k, if line k is
consistent, then line k + 1 is consistent.

We have completed the basis step and the inductive step. So we can conclude that every
line of the completed tree ∆ which has the wffs in ∆ at its root is consistent. That is: for
every line of the tree, there is some branch at that line such that every wff appearing on
that branch at or before that line is made true on some one truth-value assignment.

So, there is some branch of the completed tree such that every wff appearing on that
branch is made true by some one truth-value assignment. (If this step seems difficult to
follow, don’t worry—we will prove it more rigorously later on.)

But ∆ and ∆ were arbitrary. Thus, we can conclude that the same holds for any finite set
∆ and any completed tree ∆ with the wffs from ∆ at its root. Thus, we have completed
our proof of the claim:

Claim. For any finite set of wffs of SL, ∆, if there is some truth-value assignment which
makes every member of ∆ true, then any tree T∆ which has the members of ∆ at its root
will have a consistent branch.

Since the only way for a branch to close is for there to be wffs of the form ⌜P⌝ and ⌜∼P⌝

on the same branch, and since there is no truth-value assignment which makes both
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⌜P⌝ and ⌜∼P⌝ true, if there is a branch such that there is some truth-value assignment
whichmakes every wff on that branch true, then that branch will not close. So, we know
that the tree ∆ has some branch which remains open. So ∆ remains open.

So we may conclude that, for any finite set of wffs of SL ∆, and any SL tree ∆ which has
all and only the wffs in ∆ at its root, if ∆ is SL-consistent, then ∆ remains open.

We’ve now proven that, in general, if a finite set of wffs of SL ∆ is SL-consistent, then
any SL tree with all and only the wffs in ∆ at its root will remain open.

So, in particular, if Γ is a finite set of the premises of an SL argument and ⌜P⌝ is the
conclusion of that SL argument, then, if Γ∪ {∼P} is SL-consistent, then the tree with all
and only the wffs in Γ ∪ {∼P} at its root will remain open.

if Γ ∪ {∼P} is SL-consistent, then Γ ̸|−S L P

Taking the contrapositive of this conditional, we get

if Γ |−S L P, then Γ ∪ {∼P} is SL-inconsistent

And, since we know that Γ ∪ {∼P} is SL-inconsistent iff Γ |=S L P, this means that

if Γ |−S L P, then Γ |=S L P

That is: the SL tree method is sound (at least, if the premise set is finite).



Chapter 9

Completeness of the Tree Method
for Sentence Logic

Today we wish to show that the tree method for SL is complete. Recall, the tree method
is complete iff, whenever an argument is SL-valid, the tree method tells us that it is valid.

completeness The tree method for SL is complete iff, for any set of wffs of SL Γ and
any wff of SL ⌜P⌝:

if Γ |=S L P, then Γ |−S L P

This is, recall, equivalent to saying that we can trust everything that the treemethod tells
us about invalidity. That’s because, in general, ⌜P ⊃ Q⌝ is equivalent to ⌜∼Q ⊃ ∼P⌝—
known as the contrapositive of ⌜P ⊃ Q⌝. Therefore, we can re-write the property of
completeness as follows:

if Γ ̸|−S L P, then Γ ̸|=S L P (completeness)

That is: if the tree method says that an argument is invalid, then it is invalid.

Recall: the argument from the premises in Γ to the conclusion ⌜P⌝ is SL-invalid iff there
is some truth-value assignment whichmakes all the wffs in Γ true and whichmakes ⌜P⌝
false. And this is so iff there is some truth-value assignment which makes all the wffs
in Γ true and which makes ⌜∼P⌝ true. And this is true iff there is some truth-value
assignment which makes all the wffs in Γ ∪ {∼P} true. Therefore, Γ ̸|=S L P iff Γ ∪ {∼P}
is SL-consistent. So we can re-write completeness as follows:

if Γ ̸|−S L P, then Γ ∪ {∼P} is SL-consistent (completeness)

225
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This is the form in which we will prove that the tree method for SL is complete. We will
show that this claim holds for any finite set of premises Γ and any conclusion ⌜P⌝. We
will show this by showing something more informative. We will show that for any finite
set of wffs ∆, if the tree beginning with all and only the wffs in ∆ has an open branch,
then ∆ is SL-consistent. That is, we will prove the following claim

Claim 9. For any finite set of wffs ∆, and any tree ∆ which begins with all and only the
wffs in ∆ at its root, if ∆ has an open branch, then there is some truth-value assignment
which makes all the wffs in ∆ true.

Note that, in the claim above, we have restricted our attention to finite sets of wffs. We
will talk about how to relax this restriction later on in the course.

9.1 The Proof in Broad Outline

Here’s how our proof of completeness is going to proceed. The claim we wish to estab-
lish is a universally quantified conditional. We’re going to prove it by using conditional
proof. That is, we will assume, for some arbitrary finite set of wffs ∆ and some arbitrary
SL tree ∆ with all and only the wffs in ∆ at its root, that ∆ has an open branch. Call that
open branch ‘b’. We will use this open branch to construct a truth-value assignment Ab
which makes all of the wffs appearing on b true. Since the wffs in ∆ are at the root of the
tree, they appear on every branch. Therefore, Ab makes all the wffs in ∆ true. Therefore,
there is some truth-value assignment which makes all the wffs in ∆ true. Therefore, ∆
is SL-consistent.

Thus, we will have proven, from our assumption that a tree ∆ with all and only the wffs
in ∆ at its root has an open branch, that ∆ is SL-consistent. Since ∆ and ∆ were arbitrary,
we can conclude that, for any finite set ∆ and any tree ∆ with all and only the wffs in ∆
at its root, if ∆ has an open branch, then ∆ is SL-consistent.

I said that we would show that, if there’s an open branch, ‘b’, on ∆, then there’s some
truth-value assignment Ab which makes all the wffs appearing on b true. How will we
show this? We will use mathematical induction. First, we will construct the truth-value
assignment Ab as follows: if the negation of a sentence letter appears on b, then that
statement letter will be given the truth-value ‘false’ by Ab. Every other statement letter
of SL will be given the truth-value ‘true’ by Ab. We will then show that every wff on b
which is a statement letter is true on Ab (this is the basis step). And we will show that,
for any k ≥ 0, if every wff on b with k or fewer symbols from the vocabulary of SL is
true on Ab, then every wff on b with k + 1 symbols from the vocabulary of SL is true
on Ab is true too (this is the inductive step).

From the basis step and the inductive step, we can conclude that every wff on b is true
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on Ab. Since all the wffs in ∆ are on b, all the wffs in ∆ are true on Ab. So, ∆ is SL-
consistent.

9.2 Proof that the Tree Method for SL is Complete

Proof. Assume, for the purposes of conditional proof, that there is some complete tree
∆ which has all and only the wffs in ∆ at its root and which has at least one open branch.
Take the left-most open branch of ∆. Call that branch ‘b’. From b we may build a truth-
value assignment Ab as follows:

1. For any statement letter ⌜A⌝, if ⌜∼A⌝ appears on b, then let ⌜A⌝ receive the
truth-value ‘false’ on Ab.

2. For any statement letter ⌜A⌝, if ⌜∼A⌝ does not appear on b, then let ⌜A⌝ receive
the truth-value ‘true’ on Ab.

We will be doing mathematical induction on the following list:

set 0) All statement letters on b.

set 1) All wffs on b with 2 symbols from the vocabulary of SL.

set 2) All wffs on b with 3 symbols from the vocabulary of SL.

...

set n) All wffs on b with n symbols from the vocabulary of SL.

...

If a wff of S L has n symbols from the vocabulary of SL, then we will say that that wff has
length n.

And we will be using the following inductive property:

inductive property A set from our list has the inductive property iff that set con-
tains only wffs which are true on the truth-value assignment Ab.

First, we must complete the basis step by showing that every wff in set 0 is true on Ab.
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Basis Step. For any statement letter ⌜A⌝ appearing on b, Ab would only give ⌜A⌝ the
truth-value ‘false’ if ⌜∼A⌝ appeared on b. If both ⌜A⌝ and ⌜∼A⌝ appeared on b, then b
would be a closed branch. But we know that b is an open branch. So, for any statement
letter ⌜A⌝ appearing on b, we know that ⌜∼A⌝ does not appear on b. Therefore, we
know that Ab gives any statement letter appearing on b the truth-value ‘true’. Therefore,
every wff in set 0 is true on Ab.

Now, we complete the inductive step by showing that, for any k, if all wffs on b of length
k or lower are true on Ab, then all wffs on b with k + 1 symbols from the vocabulary of
SL will also be true on Ab.

Inductive Step. Assume, for the purposes of conditional proof, the inductive hypoth-
esis.

Inductive Hypothesis. For some arbitrary k, all wffs on b of length k or lower are true
on Ab.

There may very well not be any wffs of length k + 1 on b. If so, then all of the none of
them are trivially true on Ab. If, on the other hand, there are some wffs of length k + 1
on b, then any such wff, ⌜P⌝, will have one of the following forms:

1. ⌜∼A⌝, for some statement letter ⌜A⌝.

2. ⌜(Q∨R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less than or equal to k − 2.

3. ⌜(Q & R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less than or equal to k − 2.

4. ⌜(Q ⊃ R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less than or equal to k − 2.

5. ⌜(Q ≡ R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less than or equal to k − 2.

6. ⌜∼∼Q⌝, for some ⌜Q⌝ of length less than or equal to k − 1.

7. ⌜∼(Q∨R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less than or equal to k − 3.

8. ⌜∼(Q & R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less than or equal to k − 3.

9. ⌜∼(Q ⊃ R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less than or equal to k − 3.

10. ⌜∼(Q ≡ R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less than or equal to k − 3.

We will show that, in each case, ⌜P⌝ will be true on Ab.

Case 1: Suppose that ⌜P⌝ is of the form ⌜∼A⌝, for some statement letter ⌜A⌝. Then,
by the definition of Ab, ⌜A⌝ is given the value ‘false’ by Ab. By the definition
of ‘∼’, ⌜∼A⌝ is given the value ‘true’ by Ab.
So ⌜P⌝ is true on Ab.
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Case 2: Suppose that ⌜P⌝ is of the form ⌜(Q ∨R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less
than or equal to k − 2. Then, since ⌜(Q ∨R)⌝ appears on an open branch, b,
⌜(Q∨R)⌝ must have had the rule (∨) applied to it (else the tree would not be
complete).

(∨)

(Q∨R) ✓

Q R

Since ⌜(Q∨R)⌝ is on b, either ⌜Q⌝ is on b or ⌜R⌝ is on b.

(a) If ⌜Q⌝ is on b, then, by the inductive hypothesis, Ab makes ⌜Q⌝ true.
And, by the definition of ‘∨’, ifAb makes ⌜Q⌝ true, thenAb makes ⌜(Q∨
R)⌝ true.

(b) If ⌜R⌝ is on b, then , by the inductive hypothesis, Ab makes ⌜R⌝ true.
And, by the definition of ‘∨’, if Ab makes ⌜R⌝ true, thenAb makes ⌜(Q∨
R)⌝ true.

So, either way, Ab makes ⌜P⌝ true.

Case 3: Suppose that ⌜P⌝ is of the form ⌜(Q & R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less
than or equal to k − 2. Then, since ⌜(Q & R)⌝ appears on an open branch, b,
⌜(Q & R)⌝ must have had the rule ( & ) applied to it (else the tree would not
be complete).

(&)

(Q & R) ✓

Q
R

Since ⌜(Q & R)⌝ is on b, both ⌜Q⌝ and ⌜R⌝ are on b. By the inductive hy-
pothesis, Ab makes both ⌜Q⌝ and ⌜R⌝ true. By the definition of ‘&’, if Ab
makes both ⌜Q⌝ and ⌜R⌝ true, then Ab makes ⌜(Q & R)⌝ true.

So, Ab makes ⌜P⌝ true.

Case 4: Suppose that ⌜P⌝ is of the form ⌜(Q ⊃ R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less
than or equal to k − 2. Then, since ⌜(Q ⊃ R)⌝ appears on an open branch, b,
⌜(Q ⊃ R)⌝ must have had the rule (⊃) applied to it (else the tree would not be
complete).
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(⊃)

(Q ⊃ R) ✓

∼Q R

Since ⌜(Q ⊃ R)⌝ is on b, either ⌜∼Q⌝ is on b or ⌜R⌝ is on b.

(a) If ⌜∼Q⌝ is on b, then, by the inductive hypothesis, Ab makes ⌜∼Q⌝ true.
By the definition of ‘∼’, Ab makes ⌜Q⌝ false. By the definition of ‘⊃’, if Ab
makes ⌜Q⌝ false, then Ab makes ⌜(Q ⊃ R)⌝ true.

(b) If ⌜R⌝ is on b, then , by the inductive hypothesis, Ab makes ⌜R⌝ true.
And, by the definition of ‘⊃’, ifAb makes ⌜R⌝ true, thenAb makes ⌜(Q ⊃
R)⌝ true.

So, either way, Ab makes ⌜P⌝ true.

Case 5: Suppose that ⌜P⌝ is of the form ⌜(Q ≡ R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less
than or equal to k − 2. Then, since ⌜(Q ≡ R)⌝ appears on an open branch, b,
⌜(Q ≡ R)⌝ must have had the rule (≡) applied to it (else the tree would not be
complete).

(≡)

(Q ≡ R) ✓

Q
R

∼Q
∼R

Since ⌜(Q ≡ R)⌝ is on b, either both ⌜Q⌝ and ⌜R⌝ are on b or both ⌜∼Q⌝ and
⌜∼R⌝ are on b.

(a) If both ⌜Q⌝ and ⌜R⌝ are on b, then, by the inductive hypothesis, Ab
makes both ⌜Q⌝ and ⌜R⌝ true. By the definition of ‘≡’, if Ab makes ⌜Q⌝
and ⌜R⌝ true, then Ab makes ⌜(Q ≡ R)⌝ true.

(b) If both ⌜∼Q⌝ and ⌜∼R⌝ are on b, then , by the inductive hypothesis, Ab
makes both ⌜∼Q⌝ and ⌜∼R⌝ true. By the definition of ‘∼’, Ab makes both
⌜Q⌝ and ⌜R⌝ false. By the definition of ‘≡’, if Ab makes both ⌜Q⌝ and
⌜R⌝ true, then Ab makes ⌜(Q ≡ R)⌝ true.

So, either way, Ab makes ⌜P⌝ true.

Case 6: Suppose that ⌜P⌝ is of the form ⌜∼∼Q⌝, for some ⌜Q⌝ of length less than or
equal to k − 1. Then, since ⌜∼∼Q⌝ appears on an open branch, ⌜∼∼Q⌝ must
have had the rule (∼∼) applied to it (else the tree would not be complete).
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(∼∼)

∼∼Q ✓

Q

Since ⌜∼∼Q⌝ is on b, ⌜Q⌝ must be on b. By the inductive hypothesis, Ab
makes ⌜Q⌝ true. By the definition of ‘∼’, Ab must make ⌜∼∼Q⌝ true as well.

So, Ab makes ⌜P⌝ true.

Case 7: Suppose that ⌜P⌝ is of the form ⌜∼(Q∨R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less
than or equal to k − 3. Then, since ⌜∼(Q∨R)⌝ appears on an open branch, b,
⌜∼(Q∨R)⌝ must have had the rule (∼∨) applied to it (else the tree would not
be complete).

(∼∨)

∼(Q∨R) ✓

∼Q
∼R

Since ⌜∼(Q ∨ R)⌝ is on b, both ⌜∼Q⌝ and ⌜∼R⌝ must be on b too. By the
inductive hypothesis, Ab makes both ⌜∼Q⌝ and ⌜∼R⌝ true. By the definition
of ‘∼’, Ab makes both ⌜Q⌝ and ⌜R⌝ false. Thus, by the definition of ‘∨’, Ab
makes ⌜(Q ∨R)⌝ false. Thus, by the definition of ‘∼’, Ab makes ⌜∼(Q ∨R)⌝

true.

So, Ab makes ⌜P⌝ true.

Case 8: Suppose that ⌜P⌝ is of the form ⌜∼(Q & R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less
than or equal to k − 3. Then, since ⌜∼(Q & R)⌝ appears on an open branch, b,
⌜∼(Q & R)⌝ must have had the rule (∼&) applied to it (else the tree would not
be complete).

(∼&)

∼(Q & R) ✓

∼Q ∼R

Since ⌜∼(Q & R)⌝ is on b, either ⌜∼Q⌝ is on b or ⌜∼R⌝ is on b.
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(a) If ⌜∼Q⌝ is on b, then, by the inductive hypothesis, Ab makes ⌜∼Q⌝ true.
By the definition of ‘∼’, if Ab makes ⌜∼Q⌝ true, then Ab makes ⌜Q⌝
false. By the definition of ‘&’, if Ab makes ⌜Q⌝ false, then Ab makes
⌜(Q & R)⌝ false. By the definition of ‘∼’, if Ab makes ⌜(Q & R)⌝ false,
then Ab makes ⌜∼(Q & R)⌝ true.

(b) If ⌜∼R⌝ is on b, then , by the inductive hypothesis, Ab makes ⌜∼R⌝ true.
By the definition of ‘∼’, Ab makes ⌜R⌝ false. By the definition of ‘&’, if
Ab makes ⌜R⌝ false, then Ab makes ⌜(Q & R)⌝ false. By the definition
of ‘∼’, Ab makes ⌜∼(Q & R)⌝ true.

So, either way, Ab makes ⌜P⌝ true.

Case 9: Suppose that ⌜P⌝ is of the form ⌜∼(Q ⊃ R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less
than or equal to k − 3. Then, since ⌜∼(Q ⊃ R)⌝ appears on an open branch,
b, ⌜∼(Q ⊃ R)⌝ must have had the rule (∼ ⊃) applied to it (else the tree would
not be complete).

(∼ ⊃)

∼(Q ⊃ R) ✓

Q
∼R

Since ⌜∼(Q ⊃ R)⌝ is on b, both ⌜Q⌝ and ⌜∼R⌝ must be on b too. By the
inductive hypothesis, Ab makes both ⌜Q⌝ and ⌜∼R⌝ true. By the definition of
‘∼’, Ab makes ⌜R⌝ false. Thus, by the definition of ‘⊃’, Ab makes ⌜(Q ⊃ R)⌝

false. Thus, by the definition of ‘∼’, Ab makes ⌜∼(Q ⊃ R)⌝ true.
So, Ab makes ⌜P⌝ true.

Case 10: Suppose that ⌜P⌝ is of the form ⌜∼(Q ≡ R)⌝, for some ⌜Q⌝, ⌜R⌝ of length less
than or equal to k − 3. Then, since ⌜∼(Q ≡ R)⌝ appears on an open branch,
b, ⌜∼(Q ≡ R)⌝ must have had the rule (∼ ≡) applied to it (else the tree would
not be complete).

(∼ ≡)

∼(Q ≡ R) ✓

Q
∼R

∼Q
R

Since ⌜∼(Q ≡ R)⌝ is on b, either both ⌜Q⌝ and ⌜∼R⌝ are on b or both ⌜∼Q⌝

and ⌜R⌝ are on b.
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(a) If both ⌜Q⌝ and ⌜∼R⌝ are on b, then, by the inductive hypothesis, Ab
makes both ⌜Q⌝ and ⌜∼R⌝ true. By the definition of ‘∼’, Ab makes ⌜R⌝
false. By the definition of ‘≡’, ifAb makes ⌜Q⌝ true and ⌜R⌝ false, thenAb
makes ⌜(Q ≡ R)⌝ false. By the definition of ‘∼’, Ab makes ⌜∼(Q ≡ R)⌝

true.

(b) If both ⌜∼Q⌝ and ⌜R⌝ are on b, then , by the inductive hypothesis, Ab
makes both ⌜∼Q⌝ and ⌜R⌝ true. By the definition of ‘∼’, Ab makes ⌜Q⌝
false. By the definition of ‘≡’, ifAb makes ⌜Q⌝ false and ⌜R⌝ true, thenAb
makes ⌜(Q ≡ R)⌝ false. By the definition of ‘∼’, Ab makes ⌜∼(Q ≡ R)⌝

true.

So, either way, Ab makes ⌜P⌝ true.

Therefore, for any wff ⌜P⌝ on b of length k + 1, no matter its form, it follows from the
inductive hypothesis (that all wffs on b of length less than or equal to k are true on Ab)
that ⌜P⌝ is true on Ab.

Since k was arbitrary, we may conclude that, for any k, if all wffs on b of length less than
or equal to k are true on Ab, then all wffs on b of length k + 1 are true on Ab, too.

We have now completed the basis step and the inductive step. We have therefore shown,
from our assumption that a tree ∆ with all and only the wffs in ∆ at its root has an open
branch, b, that there is some truth-value assignment which makes all the wffs on that
branch true. However, ∆ and ∆ were arbitrary. We may therefore conclude:

Claim 1. For any finite set of wffs ∆, and any tree ∆ which begins with all and only the
wffs in ∆ at its root, if ∆ has an open branch, then there is some truth-value assignment
which makes all the wffs in ∆ true.

Claim 1 tells us that, if a tree beginning with the wffs in ∆ has an open branch, then the
wffs appearing on that branch are SL-consistent. In particular, since all the wffs in ∆ are
on every branch of ∆, Claim 1 tells us that ∆ is SL-consistent.

If we let ∆ = Γ ∪ {∼P}, for a finite premise set Γ and a conclusion P, then Claim 1 tells
us that

if Γ ̸|−S L P, then Γ ∪ {∼P} is SL-consistent

Taking the contrapositive, we get:

if Γ ∪ {∼P} is SL-inconsistent, then Γ |−S L P
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Since Γ ∪ {∼P} is SL-inconsistent iff Γ |=S L P, this tells us that

if Γ |=S L P, then Γ |−S L P

That is: it tells us that the tree method for SL is complete (so long as the premise set is
finite, at least).
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